bài 49 : Cho tam giác ABC có góc ABC = góc ACB và có đường phân giác AD
a) Góc ADB và góc ADC là góc ngoài của những tam giác nào ? Chứng minh góc ADB = góc ADC
2) Chứng minh AB = AC
help me !!!!!!!!!!!!!!!!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3:
Xét tứ giác ANBC có
E là trung điểm chung của AB và NC
=>ANBC là hbh
=>AN//BC và AN=BC
Xét tứ giác ABCM có
D là trung điểm chung của AC và BM
=>ABCM là hbh
=>AM//BC và AM=BC
=>AN//AM và AN=AM
=>A là trung điểm của MN
cm dc câu a thui ^^
gọi góc ADB là góc D1 góc ADC là góc D2
xét ta.giác ABD có :góc B+D1+1/2 góc BAC=180 độ(1)
xét ta.giác ADC có :góc C+D2+1/2 góc BAC=180 độ(2)
trừ lần lượt 2 vế của đẳng thức 1 và 2 ta có : góc B+D1+1/2 góc BAC -(góc C+D2+1/2 góc BAC)=180-180
<=>góc B+D1- góc C - D2=0
<=>góc B - góc C= D2 - D1
a: Xét ΔADC có góc ADB là góc ngoài tại đỉnh D
nên \(\widehat{ADB}=\widehat{DAC}+\widehat{C}\)
Xét ΔADB có góc ADC là góc ngoài tại đỉnh D
nên \(\widehat{ADC}=\widehat{DAB}+\widehat{B}=\widehat{DAC}+\widehat{B}\)
\(\widehat{ADC}-\widehat{ADB}\)
\(=\widehat{DAC}+\widehat{B}-\widehat{DAC}-\widehat{C}\)
\(=\widehat{ABC}-\widehat{ACB}\)
b: Vì AD và AE là hai tia phân giác của hai góc kề bù
nên AD vuông góc AE
=>ΔDAE vuông tại A
ΔDAE vuông tại A
=>\(\widehat{AEB}+\widehat{ADB}=90^0\)
=>\(\widehat{AEB}+\left(\dfrac{1}{2}\widehat{BAC}+\widehat{C}\right)=\dfrac{1}{2}\widehat{BAC}+\dfrac{1}{2}\widehat{ABC}+\dfrac{1}{2}\widehat{ACB}\)
=>\(\widehat{AEB}=\dfrac{1}{2}\widehat{BAC}+\dfrac{1}{2}\widehat{ABC}+\dfrac{1}{2}\widehat{ACB}-\dfrac{1}{2}\widehat{BAC}-\widehat{C}\)
=>\(\widehat{AEB}=\dfrac{1}{2}\left(\widehat{ABC}-\widehat{ACB}\right)\)
a, Ta có AC > AB => ^B > ^C
b, Ta có : ^ADC = 1800 - ^DAC - ^C
^ADB = 1800 - ^DAB - ^B
mà ^DAC = ^DAB ( AD là pg )
^C > ^B => ^ADC < ^ADB
TL:
a, Ta có AC > AB => ^B > ^C
b, Ta có : ^ADC = 1800 - ^DAC - ^C
^ADB = 1800 - ^DAB - ^B
mà ^DAC = ^DAB ( AD là pg )
^C > ^B => ^ADC < ^ADB
k mik nha bn
a: \(\widehat{BAD}+\widehat{B}+\widehat{ADB}=\widehat{CAD}+\widehat{C}+\widehat{ADC}\left(=180^0\right)\)
\(\Leftrightarrow\widehat{B}+\widehat{ADB}=\widehat{C}+\widehat{ADC}\)
mà \(\widehat{B}>\widehat{C}\)
nên \(\widehat{ADB}< \widehat{ADC}\)
a, Ta có ^ADC = 1800 - ^C - ^DAC
^ADB = 1800 - ^B - ^BAD
mà ^DAC = ^BAD ( AD là pg )
^B > ^C (gt)
=> ^ADC > ^ADB