K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2023

M =  \(\dfrac{3n+19}{n-1}\)

\(\in\)N* ⇔ 3n + 19 ⋮ n - 1

           ⇔ 3n - 3 + 22 ⋮ n - 1

         ⇔ 3( n -1) + 22 ⋮ n - 1

         ⇔ 22 ⋮ n - 1

        ⇔  n - 1 ⋮ \(\in\){ -22; -11; -2; -1; 1; 2; 11; 22}

        ⇔ n \(\in\) { -21; -10; -1; 0; 2; 3; 12; 23}

          Vì n \(\in\) N* ⇒ n \(\in\) {0; 2; 3; 12; 23}

b, Gọi d là ước chung lớn nhất của 3n + 19 và n - 1

Ta có:  \(\left\{{}\begin{matrix}3n+19⋮d\\n-1⋮d\end{matrix}\right.\) 

        ⇒  \(\left\{{}\begin{matrix}3n+19⋮d\\3n-3⋮d\end{matrix}\right.\)

     Trừ vế cho vế ta được: 

           3n + 19 - (3n - 3) ⋮ d

       ⇒ 3n + 19 - 3n + 3 ⋮ d

       ⇒ 22 ⋮ d 

Ư(22) = { - 22;  -11; -2; -1; 1; 2; 22}

⇒ d \(\in\) {1; 2; 11; 22}

nếu n chẵn 3n + 19 lẻ; n - 1 lẻ => d không chia hết cho 2, không chia hết cho 22

nếu n # 11k + 1 => n - 1 # 11k => d không chia hết cho 11

Vậy để phân số M tối giản thì

\(\in\) Z = { n \(\in\) Z/ n chẵn và n # 11k + 1 ; k \(\in\)Z}

 

 

 

       

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

11 tháng 3 2017

1)

gọi ƯC(3n-2,4n-3) là d

=>\(\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\Rightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1;-1\)

=>ƯC(3n-2,4n-3)={1;-1}

=>\(\frac{3n-2}{4n-3}\)là p/số tối giản

vậy...

25 tháng 3 2017

Để 3n + 2 / n-1 , ta có :

 3n +2 : n-1

=> ( 3n - 3 ) +3 +2 chia hết cho n - 1

=> 3(n - 1) + 5 chia hết cho n -1

 Vì 3( n -1 ) chia hết cho n - 1 => 5 chia hết cho n -1

=> n -1 thuộc Ư ( 5)

=> n - 1 = -5 , 5,1,-1

mà n thuộc N => 6 ;2;0

22 tháng 3 2017

Để \(\frac{3n+2}{n-1}\) là số tự nhiên

\(\Leftrightarrow3n+2⋮n-1\)

\(\Leftrightarrow\left(3n-3\right)+3+2⋮n-1\)

\(\Leftrightarrow3\left(n-1\right)+5⋮n-1\)

Vì \(3\left(n-1\right)⋮n-1\)nên \(5⋮n-1\)

\(\Rightarrow n-1\inƯ\left(5\right)\)

\(\Rightarrow n-1=5;-5;1;-1\)

n-1n
56
-5-4
12
-10

Mà theo đề ra \(n\in N\)\(\Rightarrow n=6;2;0\)

NV
1 tháng 3 2023

a. Ta có \(63=3^2.7\) có 2 ước nguyên tố là 3 và 7

Do \(3n+1\) ko chia hết cho 3 với mọi n tự nhiên

\(\Rightarrow\) Phân số đã cho rút gọn được khi \(3n+1\) và 63 có ước chung là 7

\(\Rightarrow3n+1⋮7\)

Mà 3n+1 và 7 đều chia 3 dư 1 \(\Rightarrow3n+1=7\left(3k+1\right)\Rightarrow n=7k+2\) với k là số tự nhiên

Vậy \(n=7k+2\) với k là số tự nhiên thì phân số đã cho rút gọn được

b.

A là số tự nhiên khi \(63⋮3n+1\Rightarrow3n+1=Ư\left(63\right)\)

Mà \(3n+1⋮̸3\Rightarrow\left[{}\begin{matrix}3n+1=7\\3n+1=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}n=2\\n=0\end{matrix}\right.\)

Để A là số tự nhiên thid 

63 chia hết cho 3n+1

=> 3 n+1 thuộc Ư(63)={1;3;7;9;21;63}

=>3n thuộc {0;2;6;8;20;62}

=>n thuộc {0;2}

Vậy....

Mk ko chắc lắm đâu sai thì xin lỗi bn

12 tháng 4 2020

Cho phân số \(A=\frac{63}{3n+1}\left(n\inℕ\right)\)

Để A là số tự nhiên => \(63⋮3n+1\)

=> \(3n+1\inƯ\left(63\right)=\left\{\pm1;\pm3;\pm7;\pm9;\pm21;\pm63\right\}\)

Ta có bảng sau

3n+11-13-37-79-921-2163-63
n0-2/32/3-4/32-8/38/3-10/320/3-22/362/3-64/3

Vì n thuộc N

=> n thuộc { 0 ; 2 }

ghi cho ro rang 1 chut ko hiu de