1 + (1 + 2) + .(1 + 2 + 3) + ... + .(1 + 2+ 3 + ... + 20)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
160-(2^3.5^2-6.25)= 160-(8.25-150)=160-50=110
4.5^2-32.2^4= 4.25 - 32.16= 100-512=-412
5871:[928-(247-82).5]=5871:[(928-165).5=5871: ( 763.5)=5871:103=57
777:7+1331:11^3 = 111+1331:1331 = 111+1=112
17.85+15.17-120=17(85+15)-120=17.100-120=1700-120=1580
15.141+59.15=15(141+59)=15.200=3000
20-[30-(5-1)^2]=20-[30-4^2]=20-(30-16)=20-11=9
37-11.3.(24-23)+22.10= 37-33.1+220=37-253=-216
160-(2^3.5^2-6.25)= 160-(8.25-150)=160-50=110
4.5^2-32.2^4= 4.25 - 32.16= 100-512=-412
5871:[928-(247-82).5]=5871:[(928-165).5=5871: ( 763.5)=5871:103=57
777:7+1331:11^3 = 111+1331:1331 = 111+1=112
17.85+15.17-120=17(85+15)-120=17.100-120=1700-120=1580 15.141+59.15=15(141+59)=15.200=3000
20-[30-(5-1)^2]=20-[30-4^2]=20-(30-16)=20-11=9
37-11.3.(24-23)+22.10= 37-33.1+220=37-253=-216
\(\frac{m}{n}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{1331}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1330}\right)\)
\(\frac{m}{n}=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{1330}+\frac{1}{1331}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1330}\right)\)
\(\frac{m}{n}=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{1330}+\frac{1}{1331}\right)-\left(1+\frac{1}{2}+...+\frac{1}{665}\right)\)
\(\frac{m}{n}=\frac{1}{666}+\frac{1}{667}+...+\frac{1}{1330}+\frac{1}{1331}\)
\(\frac{m}{n}=\left(\frac{1}{666}+\frac{1}{1331}\right)+\left(\frac{1}{667}+\frac{1}{1330}\right)+...+\left(\frac{1}{998}+\frac{1}{999}\right)\)
\(\frac{m}{n}=\frac{1997}{666.1331}+\frac{1997}{667.1330}+...+\frac{1997}{998.999}=\frac{1997k_1+1997.k_2+...+1997.k_{333}}{666.667...1331}\)
\(\frac{m}{n}=\frac{1997.\left(k_1+k_2+...+k_{333}\right)}{666.667...1330.1331}\) trong đó: k1;...; k333 là các thừa số phụ của các phân số trong tổng
Nhận xét: phân số trên có tử chia hết cho 1997 là số nguyên tố; mẫu số không chia hết cho thừa số nguyên tố 1997 nên khi rút gọn tử vẫn chia hết cho 1997
=> m chia hết cho 1997
số hình được sơn 3 mặt là 8 hình
số hình được sơn 2 mặt là 108 hình
số hình được sơn 1 mặt là 486 hình
a) \(11^n=1331\)
\(\Rightarrow11^n=11^3\)
\(\Rightarrow n=3\)
b) \(n^3=125\)
\(\Rightarrow n^3=5^3\)
\(\Rightarrow n=5\)
c) \(5^4=n\)
\(\Rightarrow625=n\)
\(\Rightarrow n=625\)
d) \(\left(n+1^2\right)=9\)
\(\Rightarrow n+1=9\)
\(\Rightarrow n=9-1\)
\(\Rightarrow n=8\)
a) 11^n = 1331
⇒ 11^n = 11^3
⇔ n = 3
b) n^ 3 = 125
⇒ n^3 = 5^3
⇔ n = 5
c) 5^4 = n
⇒ n = 625
d) ( n + 1^2 ) = 9
⇒ ( n + 1 ) = 9
⇒ n = 8
1)\(8.2^n=128\Rightarrow2^n=128:8\Rightarrow2^n=16\Rightarrow2^n=2^4\Rightarrow n=4\)
2)\(121.11^n=1331\Rightarrow11^n=1331:121\Rightarrow11^n=11\Rightarrow n=1\)
3)\(7^n:49=343\Rightarrow7^n:7^2=7^3\Rightarrow7^n=7^3.7^2\Rightarrow7^n=7^5\Rightarrow n=5\)
nhớ **** cho mình nhé
\(1+\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+3+...+20}\)
\(=1+\dfrac{1}{2\cdot\dfrac{3}{2}}+\dfrac{1}{3\cdot\dfrac{4}{2}}+...+\dfrac{1}{20\cdot\dfrac{21}{2}}\)
\(=\dfrac{2}{1\cdot2}+\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{20\cdot21}\)
\(=2\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{20\cdot21}\right)\)
\(=2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{20}-\dfrac{1}{21}\right)\)
\(=2\left(1-\dfrac{1}{21}\right)=2\cdot\dfrac{20}{21}=\dfrac{40}{21}\)