Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(11^n=1331\)
\(\Rightarrow11^n=11^3\)
\(\Rightarrow n=3\)
b) \(n^3=125\)
\(\Rightarrow n^3=5^3\)
\(\Rightarrow n=5\)
c) \(5^4=n\)
\(\Rightarrow625=n\)
\(\Rightarrow n=625\)
d) \(\left(n+1^2\right)=9\)
\(\Rightarrow n+1=9\)
\(\Rightarrow n=9-1\)
\(\Rightarrow n=8\)
a) 11^n = 1331
⇒ 11^n = 11^3
⇔ n = 3
b) n^ 3 = 125
⇒ n^3 = 5^3
⇔ n = 5
c) 5^4 = n
⇒ n = 625
d) ( n + 1^2 ) = 9
⇒ ( n + 1 ) = 9
⇒ n = 8
a) 54 = 625
b) n3 = 53
\(\Rightarrow\)n = 5
c) 11n = 113
\(\Rightarrow\)n = 3
54 = n
=> n = 625
n3 = 125
=> n3 = 53
=> n = 5
11n = 1331
=> 11n = 113
=> n = 3
Ta có :
a) 54 = n
=> n = 625
b) n3 = 125
=> n3 = 53
=> n = 5
c) 11n = 1331
=> 11n = 113
=> n = 3
a) 54 = n
=> n = 625
b) n3 = 125
n3 = 53
=> n = 5
c) 11n = 1331
11n = 113
=> n = 3
1)\(8.2^n=128\Rightarrow2^n=128:8\Rightarrow2^n=16\Rightarrow2^n=2^4\Rightarrow n=4\)
2)\(121.11^n=1331\Rightarrow11^n=1331:121\Rightarrow11^n=11\Rightarrow n=1\)
3)\(7^n:49=343\Rightarrow7^n:7^2=7^3\Rightarrow7^n=7^3.7^2\Rightarrow7^n=7^5\Rightarrow n=5\)
nhớ **** cho mình nhé
a) \(3^5=x\Rightarrow x=243\)
b) \(x^4=16\Rightarrow x^4=2^4\Rightarrow x=2\)
c) \(4^n=64\Rightarrow4^n=4^3\Rightarrow n=3\)
\(5^4=n\Rightarrow n=625\)
\(n^3=125\Rightarrow n^3=5^3\Rightarrow n=5\)
\(11^n=1313\Rightarrow11^n=11.121\Rightarrow11^{n-1}=121\Rightarrow11^{n-1}=11^2\Rightarrow n-1=11\Rightarrow n=12\)
1)
a)
Để tìm x trong phương trình 3^5 = x, ta thực hiện phép tính 3^5 = 3 * 3 * 3 * 3 * 3 = 243. Vậy x = 243.
b)
Để tìm x trong phương trình x^4 = 16, ta thực hiện phép tính căn bậc 4 của cả hai vế phương trình: √(x^4) = √16. Khi đó, ta được x = ±2.
c)
Để tìm n trong phương trình 4^n = 64, ta thực hiện phép tính logarit cơ số 4 của cả hai vế phương trình: log4(4^n) = log4(64). Khi đó, ta được n = 3.
2) a)
Để tìm n trong phương trình 5^4 = N, ta thực hiện phép tính 5^4 = 5 * 5 * 5 * 5 = 625. Vậy N = 625.
b)
Để tìm n trong phương trình n^3 = 125, ta thực hiện phép tính căn bậc 3 của cả hai vế phương trình: ∛(n^3) = ∛125. Khi đó, ta được n = 5.
c)
Để tìm n trong phương trình 11^n = 1331, ta thực hiện phép tính logarit cơ số 11 của cả hai vế phương trình: log11(11^n) = log11(1331). Khi đó, ta được n = 3.
a) \(5^2=n\\ n=5.5\\ n=25\)
b) \(n^3=125\\ n^3=5.5.5=5^3\\ n=5\)
d) \(11^{n+1}=1331\\ 11^{n+1}=11.11.11=11^3\\ n+1=3\\ n=2\)