K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2

       \(\dfrac{x-4}{1971}\)  +  \(\dfrac{x-3}{1972}\)  = \(\dfrac{x-2}{1973}\) + \(\dfrac{x-1}{1974}\)

\(\dfrac{x-4}{1971}\) - 1 + \(\dfrac{x-3}{1972}\) - 1 =  \(\dfrac{x-2}{1973}\) - 1 + \(\dfrac{x-1}{1974}\) - 1

\(\dfrac{x-4-1971}{1971}\) + \(\dfrac{x-3-1972}{1972}\) = \(\dfrac{x-2-1973}{1973}\) + \(\dfrac{x-1}{1974}\)

  \(\dfrac{x-1975}{1971}\)     + \(\dfrac{x-1975}{1972}\)     = \(\dfrac{x-1975}{1973}\) + \(\dfrac{x-1975}{1974}\)

 \(\dfrac{x-1975}{1971}\)   +  \(\dfrac{x-1995}{1972}\)  - \(\dfrac{x-1975}{1973}\) - \(\dfrac{x-1975}{1974}\) = 0

(\(x-1975\)).(\(\dfrac{1}{1971}\) + \(\dfrac{1}{1972}\) - \(\dfrac{1}{1973}\) - \(\dfrac{1}{1974}\)) = 0

 \(x\) - 1975  = 0

 \(x\)             = 1975

Vậy \(x\) = 1975 

  

 

8 tháng 7 2023

chỉ cho biết mẫu số nên ta quy đồng mẫu số 

4/7 < x/10 < 5/7 vậy

4/7 = 40/70

x/10 = x/70

5/7 = 50/70

vậy x là 

41;42;43;44;45;46;47;48;49

8 tháng 7 2023

\(\dfrac{4}{7}< \dfrac{x}{10}< \dfrac{5}{7}\)

\(\Rightarrow\dfrac{4.10}{7.10}< \dfrac{7.x}{10.7}< \dfrac{5.10}{7.10}\)

\(\Rightarrow\dfrac{40}{70}< \dfrac{7.x}{70}< \dfrac{50}{70}\)

\(\Rightarrow7.x\in\left\{41;42;43;...49\right\}\)

\(\Rightarrow7.x\in\left\{42;49\right\}\) \(\left(x\in N\Rightarrow7.x⋮7\right)\)

\(7.x=42\Leftrightarrow x=6\)

\(7.x=49\Leftrightarrow x=7\)

11 tháng 8 2023

Bạn xem kỹ lại đề có đúng không?

24 tháng 5 2023

(5 - \(x\))(9\(x^2\) - 4) =0

\(\left[{}\begin{matrix}5-x=0\\9x^2-4=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=5\\9x^2=4\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=5\\x^2=\dfrac{4}{9}\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=5\\x=-\dfrac{2}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\)

Vậy \(x\) \(\in\) { - \(\dfrac{2}{3}\)\(\dfrac{2}{3}\)\(5\)}

 

24 tháng 5 2023

72\(x\)  + 72\(x\) + 3 = 344

72\(x\)  \(\times\) ( 1 + 73) = 344

72\(x\)  \(\times\) (1 + 343) = 344

72\(x\)  \(\times\) 344        = 344

72\(x\)                    = 344 : 344

72\(x\)                  = 1

72\(x\)                 =  70

\(2x\)                  = 0

\(x\)                   = 0

Kết luận: \(x\) = 0

13 tháng 7 2023

\(\left(x:2,2\right)\times\dfrac{1}{6}=\dfrac{-3}{8}\times\left(0,5-1\dfrac{3}{5}\right)\)

\(\Rightarrow\left(x:2,2\right)\times\dfrac{1}{6}=\dfrac{-3}{8}\times\left(\dfrac{1}{2}-\dfrac{8}{5}\right)\)

\(\Rightarrow\left(x:2,2\right)\times\dfrac{1}{6}=\dfrac{-3}{8}\times\dfrac{11}{10}\)

\(\Rightarrow\left(x:2,2\right)\times\dfrac{1}{6}=\dfrac{33}{80}\)

\(\Rightarrow x:2,2=\dfrac{33}{80}:\dfrac{1}{6}\)

\(\Rightarrow x:2,2=\dfrac{99}{40}\)

\(\Rightarrow x=\dfrac{99}{40}\times2,2\)

\(\Rightarrow x=\dfrac{1089}{200}\)

=>(x:2,2)*1/6=-3/8(1/2-8/5)=33/80

=>x:2,2=99/40

=>x=1089/200

1 tháng 1 2022

\(a,\Rightarrow\dfrac{\left(-3\right)^x}{\left(-3\right)^4}=\left(-3\right)^3\\ \Rightarrow\left(-3\right)^{x-4}=\left(-3\right)^3\\ \Rightarrow x-4=3\Rightarrow x=7\\ b,Sửa:\left(x-\dfrac{1}{2}\right)^2=25\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=5\\x-\dfrac{1}{2}=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{11}{5}\\x=-\dfrac{9}{5}\end{matrix}\right.\)

1 tháng 1 2018

a/

Theo đề,ta có:

+/ \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\left(1\right)\)

+/\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\)\(\left(2\right)\)

Từ (1) và (2), ta có:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{28}{-19}\)

Do đó:

+/ \(\dfrac{x}{8}=\dfrac{28}{-19}\Rightarrow x=-\dfrac{224}{19}\)

+/\(\dfrac{y}{12}=\dfrac{28}{-19}\Rightarrow y=-\dfrac{336}{19}\)

+/\(\dfrac{z}{15}=\dfrac{28}{-19}\Rightarrow z=-\dfrac{420}{19}\)

Vậy: + \(x=-\dfrac{224}{19}\)

+ \(y=-\dfrac{336}{19}\)

+ \(z=-\dfrac{420}{19}\)

1 tháng 1 2018

a,x2=y3,y4=z5và x-y-z=28

\(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\)

\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\)

=>\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)

Áp dụng tính chất DTSBN có:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)=\(\dfrac{x-y-z}{8-12-15}=\dfrac{-28}{19}\)

=> x=\(\dfrac{-224}{19}\)

y=\(\dfrac{-336}{19}\)

z=\(\dfrac{-420}{19}\)

a) Ta có: \(\dfrac{x^2-10x-29}{1971}+\dfrac{x^2-10x-27}{1973}=\dfrac{x^2-10x-1971}{29}+\dfrac{x^2-10x-1973}{27}\)

\(\Leftrightarrow\dfrac{x^2-10x-29}{1971}-1+\dfrac{x^2-10x-27}{1973}-1=\dfrac{x^2-10x-1971}{29}-1+\dfrac{x^2-10x-1973}{27}-1\)

\(\Leftrightarrow\dfrac{x^2-10x-2000}{1971}+\dfrac{x^2-10x-2000}{1973}=\dfrac{x^2-10x-1971}{29}+\dfrac{x^2-10x-1973}{27}\)

\(\Leftrightarrow\dfrac{x^2-10x-2000}{1971}+\dfrac{x^2-10x-2000}{1973}-\dfrac{x^2-10x-1971}{29}-\dfrac{x^2-10x-1973}{27}=0\)

\(\Leftrightarrow\left(x^2-10x-2000\right)\left(\dfrac{1}{1971}+\dfrac{1}{1973}-\dfrac{1}{29}-\dfrac{1}{27}\right)=0\)

mà \(\dfrac{1}{1971}+\dfrac{1}{1973}-\dfrac{1}{29}-\dfrac{1}{27}\ne0\)

nên \(x^2-10x-2000=0\)

\(\Leftrightarrow x^2+40x-50x-2000=0\)

\(\Leftrightarrow x\left(x+40\right)-50\left(x+40\right)=0\)

\(\Leftrightarrow\left(x+40\right)\left(x-50\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+40=0\\x-50=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-40\\x=50\end{matrix}\right.\)

Vậy: S={-40;50}

a)\(\left|\dfrac{1}{2}+x\right|-1=\dfrac{11}{2}\)

\(\Rightarrow\left|\dfrac{1}{2}+x\right|=\dfrac{11}{2}+1=\dfrac{13}{2}\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}+x=\dfrac{-13}{2}\\\dfrac{1}{2}+x=\dfrac{13}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=6\end{matrix}\right.\)

b)\(\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{2014}-1\right)\)

\(=\dfrac{-1}{2}.\dfrac{2}{-3}.\dfrac{-3}{4}...\dfrac{2012}{-2013}.\dfrac{-2013}{2014}\)

\(=\dfrac{-1}{2014}\)

số nghịch đảo của 50% là:\(\dfrac{100}{50}=2\)

 

à còn 1mm=0,000001km