Cho phân số p=\(\dfrac{6n+5}{3n+2}\) (n ϵ N):
a)Chứng minh rằng p là phân số tối giản.
b)Với giá trị nào của n thì phân số p có giá trị lớn nhất?Tìm giá trị lớn nhất đó.
Bạn nào nhanh mik tick đúng cho nhé.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\)Giả sử phân số P chưa tối giản
\(\Rightarrow6n+5⋮d;3n+2⋮d\)
Từ \(3n+2⋮d\Rightarrow2\left(3n+2\right)⋮d\)
\(\Rightarrow6n+4⋮d\)
\(\Rightarrow\left(6n+5\right)-\left(6n+4\right)⋮d\)
\(\Rightarrow1⋮d\Leftrightarrow d=1\)
Vậy p/số trên tối giản
\(b,P=\frac{6n+5}{3n+2}=\frac{6n+4+1}{3n+2}=2+\frac{1}{3n+2}\)
Để \(P\)đạt Max thì \(\frac{1}{3n+2}\)phải đạt Max
\(\Rightarrow3n+2=1\Leftrightarrow n=-\frac{1}{3}\)
Vậy Max P = 1+1=2<=> n = -1/3
a) \(P=\frac{6n+5}{3n+2}\)là phân số tối giản <=> ƯCLN(6n + 5; 3n + 2) \(\in\){-1;1}
Gọi d là ƯCLN(6n+5;3n + 2)
Ta có : 6n + 5 \(⋮\)d
3n + 2 \(⋮\)d => 2(3n + 2) \(⋮\)d => 6n + 4 \(⋮\)d
=> (6n + 5) - (6n + 4) = 1 \(⋮\)d => d\(\in\){1; -1}
Vậy P là phần số tối giản
b) tự làm
Chứng tỏ rằng : phân số 5n+3/3n+2 là phân số tối giản với n thuộc N?
Để phân số 5n+3/3n+2 tối giản với mọi n thuộc N thì ƯCLN của chúng phải bằng 1 và -1.Ta có:
Gọi d là ước chung của (5n + 3) ;( 3n + 2) (d thuộc Z)
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d
=> 1 chia hết cho d
=> d thuộc ( 1; -1)
=> ƯCLN(5n + 3 ; 3n + 2) = 1;-1
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N
Gọi ƯCLN(6n+5;3n+2) là d
Ta có:\(6n+5⋮d\)
\(3n+2⋮d\Rightarrow2\left(3n+2\right)⋮d\Rightarrow6n+4⋮d\Rightarrow6n+5-6n+4⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\RightarrowƯCLN\left(6n+5;3n+2\right)=1\left(n\in N\right)\)
\(\Rightarrow P\)là phân số tối giản
Ta có:\(p=\frac{6n+5}{3n+2}=\frac{6n+4+1}{3n+2}=\frac{2.\left(3n+2\right)+1}{3n+2}=2+\frac{1}{3n+2}\)
Để P có giá trị lớn nhất
\(\Rightarrow\frac{1}{3n+2}\)có giá trị lớn nhất
\(\frac{1}{3n+2}\ge1\)
Dấu\("="\)xảy ra khi
\(\frac{1}{3n+2}=1\Rightarrow3n+2=1\Rightarrow3n=-1\Rightarrow n=\frac{-1}{3}\)
\(\Rightarrow\)Giá trị lớn nhất của \(P=2+1=3\)khi\(n=\frac{-1}{3}\)
\(a,\)Gọi d là ƯCLN\((6n+5,3n+2)\)\((ĐK:d\inℕ^∗)\)
Ta có : \(d\inƯC(6n+5,3n+2)\)nên :
\((6n+3)⋮d\) và \((3n+2)⋮d\)
\(\Rightarrow\left[2(3n+2)-(6n+3)\right]⋮d\)
\(\Rightarrow\left[(6n+4)-(6n+3)\right]⋮d\)
\(\Rightarrow1⋮d\)
Mà \(d\inℕ^∗\)nên d = 1 . Vậy phân số \(P=\frac{6n+5}{3n+2}\)là phân số tối giản
b, Tự làm
Câu 3 :
Ta có : 14 = 2 . 7 => 2 . 7 chia hết cho 2
=> 2x + 3y chia hết cho 2
=> 2x chia hết cho 2
=> 3y chia hết cho 2
Vì ƯC(2;3) = 1
=> 3y chia hết cho 2 => y chia hết cho 2
=> 3y ≤ 14
=> y ≤ 14/3
=> y ≤ 4
=> y = 2 ; y = 4
Với y = 2 => 2x + 3 - 2 = 14=> x = 4
y = 4 => 2x + 3 . 4 = 14 => x = 1
Vậy với x = 2 thì y = 4
x = 4 thì y = 2
Câu 3 :
Ta có : 14 = 2 . 7 => 2 . 7 chia hết cho 2
=> 2x + 3y chia hết cho 2
=> 2x chia hết cho 2
=> 3y chia hết cho 2
Vì ƯC(2;3) = 1
=> 3y chia hết cho 2 => y chia hết cho 2
=> 3y ≤ 14
=> y ≤ 14/3
=> y ≤ 4
=> y = 2 ; y = 4
Với y = 2 => 2x + 3 - 2 = 14=> x = 4
y = 4 => 2x + 3 . 4 = 14 => x = 1
Vậy với x = 2 thì y = 4
x = 4 thì y = 2
a) \(P=\frac{3n+5}{6n}=\frac{n+2}{6n}+\frac{2n+3}{6n}\)
b) \(P=\frac{3n}{6n}+\frac{5}{6n}=\frac{3}{6}+\frac{5}{6n}\)=> để P lớn nhất 6n phải bé nhất => n = 1
\(GTLN.P=\frac{3}{6}+\frac{5}{6}=\frac{8}{6}=\frac{4}{3}\)
a; P = \(\dfrac{6n+5}{3n+2}\) (n \(\in\) N)
Gọi ước chung lớn nhất của 6n + 5 và 3n + 2 là d
Ta có: \(\left\{{}\begin{matrix}6n+5\\3n+2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}6n+5⋮d\\2.\left(3n+2\right)⋮d\end{matrix}\right.\)
6n + 5 - 2.(3n + 2) ⋮ d
6n + 5 - 6n - 4 ⋮ d
(6n - 6n) + 1 ⋮ d
1 ⋮ d
d = 1
Hay P = \(\dfrac{6n+5}{3n+2}\) là phân số tối giản
b; P = \(\dfrac{6n+5}{3n+2}\) ( n \(\in\) N)
P = \(\dfrac{6n+4+1}{3n+2}\)
P = \(\dfrac{2.\left(3n+2\right)}{\left(3n+2\right)}\) + \(\dfrac{1}{3n+2}\)
P = 2 + \(\dfrac{1}{3n+2}\)
Pmax ⇔ \(\dfrac{1}{3n+2}\) đạt giá trị lớn nhất
vì n \(\in\) N; \(\dfrac{1}{3n+2}\) đạt giá trị lớn nhất khi và chỉ khi
3n + 2 = 1 ⇒ n = - \(\dfrac{1}{3}\) (loại)
Vậy không có giá trị nào của n là số tự nhiên để P đạt giá trị lớn nhất.