Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\)Giả sử phân số P chưa tối giản
\(\Rightarrow6n+5⋮d;3n+2⋮d\)
Từ \(3n+2⋮d\Rightarrow2\left(3n+2\right)⋮d\)
\(\Rightarrow6n+4⋮d\)
\(\Rightarrow\left(6n+5\right)-\left(6n+4\right)⋮d\)
\(\Rightarrow1⋮d\Leftrightarrow d=1\)
Vậy p/số trên tối giản
\(b,P=\frac{6n+5}{3n+2}=\frac{6n+4+1}{3n+2}=2+\frac{1}{3n+2}\)
Để \(P\)đạt Max thì \(\frac{1}{3n+2}\)phải đạt Max
\(\Rightarrow3n+2=1\Leftrightarrow n=-\frac{1}{3}\)
Vậy Max P = 1+1=2<=> n = -1/3
a) \(P=\frac{6n+5}{3n+2}\)là phân số tối giản <=> ƯCLN(6n + 5; 3n + 2) \(\in\){-1;1}
Gọi d là ƯCLN(6n+5;3n + 2)
Ta có : 6n + 5 \(⋮\)d
3n + 2 \(⋮\)d => 2(3n + 2) \(⋮\)d => 6n + 4 \(⋮\)d
=> (6n + 5) - (6n + 4) = 1 \(⋮\)d => d\(\in\){1; -1}
Vậy P là phần số tối giản
b) tự làm
Để A là phân số thì 3n + 7 ko chia hết cho n + 1
<=> n + 1 khác Ư(4) = {-1;-2;-4;1;2;4}
=> n khác {-2;-3;-5;0;1;3}
Để A là số nguyên thì 3n + 7 chia hết cho n + 1
=> 3n + 3 + 4 chia hết cho n + 1
=> 3.(n + 1) + 4 chia hết cho n + 1
=> 4 chia hết cho n + 1
=> n + 1 thuộc Ư(4) = {-4;-2;-1;1;2;4}
=> n = {-5;-3;-2;0;1;3}
a.\(A=\frac{6n+7}{2n+1}=\frac{3\left(2n+1\right)-3+7}{2n+1}=3+\frac{4}{2n+1}\)
Để A nguyên thì 4 phải chia hết cho 2n+1
=> 2n+1 \(\varepsilon\)Ư(4) = {-4;-2;-1;1;2;4}
Mà 2n + 1 là số lẻ
=> 2n + 1 \(\varepsilon\){-1;1}
=> 2n \(\varepsilon\){-2;0}
=> n \(\varepsilon\){-1;0}
Vậy:...
a) Ta có: \(\frac{n+19}{n-2}=\frac{n-2+21}{n-2}=1+\frac{21}{n-2}\)
Để phân số tối giản thì: \(\frac{21}{n-2}\in Z\)
\(\Rightarrow21⋮n-2\)
\(\Rightarrow n-2\inƯ\left(21\right)=\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
\(\Rightarrow n\in\left\{3;1;5;-1;9;-5;23;-19\right\}\)
Để A là số nguyên
<=> 4n + 1 chia hết cho 2n + 3
<=> 4n + 6 - 5 chia hết cho 2n + 3
<=> 2(2n + 3) - 5 chia hết cho 2n + 3
<=> 5 chia hết cho 2n + 3
<=> 2n + 3 thuộc Ư(5) = {-1 ; 1 ; -5 ; 5}
<=> n thuộc {-2 ; -1 ; -4 ; 1}
Gọi ƯCLN(6n+5;3n+2) là d
Ta có:\(6n+5⋮d\)
\(3n+2⋮d\Rightarrow2\left(3n+2\right)⋮d\Rightarrow6n+4⋮d\Rightarrow6n+5-6n+4⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\RightarrowƯCLN\left(6n+5;3n+2\right)=1\left(n\in N\right)\)
\(\Rightarrow P\)là phân số tối giản
Ta có:\(p=\frac{6n+5}{3n+2}=\frac{6n+4+1}{3n+2}=\frac{2.\left(3n+2\right)+1}{3n+2}=2+\frac{1}{3n+2}\)
Để P có giá trị lớn nhất
\(\Rightarrow\frac{1}{3n+2}\)có giá trị lớn nhất
\(\frac{1}{3n+2}\ge1\)
Dấu\("="\)xảy ra khi
\(\frac{1}{3n+2}=1\Rightarrow3n+2=1\Rightarrow3n=-1\Rightarrow n=\frac{-1}{3}\)
\(\Rightarrow\)Giá trị lớn nhất của \(P=2+1=3\)khi\(n=\frac{-1}{3}\)
\(a,\)Gọi d là ƯCLN\((6n+5,3n+2)\)\((ĐK:d\inℕ^∗)\)
Ta có : \(d\inƯC(6n+5,3n+2)\)nên :
\((6n+3)⋮d\) và \((3n+2)⋮d\)
\(\Rightarrow\left[2(3n+2)-(6n+3)\right]⋮d\)
\(\Rightarrow\left[(6n+4)-(6n+3)\right]⋮d\)
\(\Rightarrow1⋮d\)
Mà \(d\inℕ^∗\)nên d = 1 . Vậy phân số \(P=\frac{6n+5}{3n+2}\)là phân số tối giản
b, Tự làm