chi tiết giúp mình nha!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ OM vuông óc với CD
Vì CD là 1 dây của (O)
=> M là trung điểm của CD
=> MC = MD
Có: AH // BK (cùng vuông góc với CD)
=> AHKB là Hình thang
Lại có: OM vuông góc với CD; O là trung điểm của AB
=> M là trung điểm của HK
=> MH = MK
Có: \(\left\{{}\begin{matrix}HD+MD=HM\\MC+CK=MK\end{matrix}\right.\)
Mà: MH = MK (cmt) và MD = MC (cmt)
=> HD = CK
b: Phương trình hoành độ giao điểm của \(\left(d1\right),\left(d2\right)\) là:
2x=-x+3
\(\Leftrightarrow3x=3\)
hay x=1
Thay x=1 vào y=2x, ta được:
\(y=2\cdot1=2\)
Vậy: \(A\left(1;2\right)\)
Thay y=0 vào \(\left(d2\right)\), ta được:
\(-x+3=0\)
hay x=3
Vậy: \(B\left(3;0\right)\)
\(AB=\sqrt{\left(1-3\right)^2+\left(2-0\right)^2}=2\sqrt{2}\)
\(OA=\sqrt{\left(0-1\right)^2+\left(0-2\right)^2}=\sqrt{5}\)
\(OB=\sqrt{\left(0-3\right)^2}=3\)
\(P=\dfrac{AB+OA+AB}{2}=\dfrac{3+2\sqrt{2}+\sqrt{5}}{2}\)
\(S=\sqrt{P\cdot\left(P-OA\right)\left(P-OB\right)\left(P-AB\right)}=3\left(đvdt\right)\)
\(-2xy\left(4xy+9x^2+4y\right)=-2xy.4xy+\left(-2xy\right).9x^2+\left(-2xy\right).4y\)
\(=-8x^2y^2-18x^3y-8xy^2\)
\(x\left(x+8y\right)-y\left(8x-y^2\right)=x^2+8xy-8xy+y^3\)
\(=x^2+y^3\)
1: =11,2-11,2+4,5-4,5+4,2=4,2
2: =3,7(-3,15-6,85)
=-3,7*10=-37
3: \(=\left[-64,008\right]\cdot\dfrac{16}{5}\cdot\dfrac{10}{8}\cdot\dfrac{1}{5}\cdot8\)
=-64,008*32/5
=-409,6512
4: \(=\left[0,2\left(-30,17-9,83\right)\right]-\left[4,48+2,52\right]:0,4\)
=-8-7:0,4
=-8-17,5
=-25,5
1) = (11,2 + -11,2) + (-4,5 + 4,5) + 4,2
= 0 + 0 + 4,2
= 4,2
2) = ( -3,15 + -6,85 ) . 3,7
= -10 . 3,7
= -3,7
Xét ΔMNP có MJ là đường trung tuyến và G là trọng tâm
nên M,G,J thẳng hàng và \(MG=\dfrac{2}{3}MJ\)
Xét ΔMNP có MJ là đường trung tuyến
nên \(\overrightarrow{MJ}=\dfrac{1}{2}\left(\overrightarrow{MN}+\overrightarrow{MP}\right)\)
=>\(\overrightarrow{MG}=\dfrac{2}{3}\cdot\dfrac{1}{2}\left(\overrightarrow{MN}+\overrightarrow{MP}\right)=\dfrac{1}{3}\overrightarrow{MN}+\dfrac{1}{3}\overrightarrow{MP}\)
=>Chọn C