A=7+7^2+7^3+...+7^36
a) A là số chẵn hay số lẻ?
b) chứng minh A chia hết cho 3;8;19
c) tìm chữ số tận cùng của A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a; (n + 4) \(⋮\) ( n - 1) đk n ≠ 1
n - 1 + 5 ⋮ n - 1
5 ⋮ n - 1
n - 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
n \(\in\) { -4; 0; 2; 6}
Bài 1 b; (n2 + 2n - 3) \(⋮\) (n + 1) đk n ≠ -1
n2 + 2n + 1 - 4 ⋮ n + 1
(n + 1)2 - 4 ⋮ n + 1
4 ⋮ n + 1
n + 1 \(\in\) Ư(4) = {-4; -2; -1; 1; 2; 4}
n \(\in\) {-5; -3; -2; 0; 1; 3}
a)Có 7 lẻ
=>7^1,7^2 ,7^3,7^4,7^5,7^6,7^7,7^8 lẻ
=>A là tổng 8 số lẻ
=>A chẵn
b)A= 7+ 7^1+7^2 +7^3+7^4+7^5+7^6+7^7+7^8
7A=7^2+7^3+7^4+7^5+7^6+7^7+7^8+7^9
7A-A=(7^2+7^3+7^4+7^5+7^6+7^7+7^8+7^9)-... 7^1+7^2 +7^3+7^4+7^5+7^6+7^7+7^8)
6A=7^9-7
Vì 7^2 chia 5 dư -1
=>(7^2)^4 chia 5 dư 1
=>7^8.7 chia 5 dư 7
=>7^9-7 chia hết cho 5
=>6A chia hết cho 5
=>A chia hết cho 5
c) A chẵn ,Achia hết cho 5
=>A có tận cùng là 0
a)Có 7 lẻ
=>7^1,7^2 ,7^3,7^4,7^5,7^6,7^7,7^8 lẻ
=>A là tổng 8 số lẻ
=>A chẵn
b)A= 7+ 7^1+7^2 +7^3+7^4+7^5+7^6+7^7+7^8
7A=7^2+7^3+7^4+7^5+7^6+7^7+7^8+7^9
7A-A=(7^2+7^3+7^4+7^5+7^6+7^7+7^8+7^9)-... 7^1+7^2 +7^3+7^4+7^5+7^6+7^7+7^8)
6A=7^9-7
Vì 7^2 chia 5 dư -1
=>(7^2)^4 chia 5 dư 1
=>7^8.7 chia 5 dư 7
=>7^9-7 chia hết cho 5
=>6A chia hết cho 5
=>A chia hết cho 5
c) A chẵn ,Achia hết cho 5
=>A có tận cùng là 0
a, A là số chẵn
b, A chia hết cho 5
c, Chữ số tận cùng của A là chữ số 0
a, A là số chẵn
b, A chia hết cho 5
c, Chữ số tận cùng của A là chữ số 0
Bài 1:
A=400x7x36+1620
*400x7x36 \(⋮\)2;3;5;9
1620 \(⋮\) 2;3;5;9
\(\Rightarrow\)400x7x36+1620\(⋮\) 2;3;5;9
Bài 2:
C=3+32+33+........+360
=(3+32)+(33+34)+...........+(359+360)
=3.(1+2)
Bài 2 :
a, \(C=3+3^2+3^3...+3^{60}\)
\(\Rightarrow C=\left(3+3^2\right)+\left(3^3+3^4\right)+...\left(3^{59}+3^{60}\right)\)
\(\Rightarrow C=1\left(1+3\right)+3^3\left(1+3\right)+..+3^{59}\left(1+3\right)\)
\(\Rightarrow C=4.\left(1+3^3+...+3^{59}\right)\)
\(\Rightarrow C⋮4\)
\(b,1+3+3^2+3^3+...+3^{60}\)
\(\Rightarrow3A=3+3^2+3^3+...+3^{60}+3^{61}\)
\(\Rightarrow3A-A=\left(3+3^2+3^3..+3^{60}+3^{61}\right)-\left(1+3+3^2+...+3^{60}\right)\)
\(\Rightarrow2A=3^{61}-1\)
\(\Rightarrow A=\frac{3^{61}-1}{2}\)
a) \(A=7+7^2+7^3+...+7^7+7^8\)
\(2A=7^2+7^3+...+7^8+7^9\)
\(2A-A=7^9-7\)
Ta có: \(7^9=7^8.7=\left(...1\right).7=...7\)
Suy ra \(A=7^9-7=\left(...7\right)-7=\left(...0\right)\Rightarrow\) A có tận cùng là 0 \(\Rightarrow\) A là số chẵn
b) Theo dấu hiệu thì số chia hết cho 5 có tận cùng bằng 0 hoặc 5. Mà A có tận cùng 0. Vậy A chia hết cho 5