Tìm x,y biết: (x−2)2024 + (√y−2)2023 = 0.(trình bày từng bước )\
Mong trả lời
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: y>=0
\(\left(x+1\right)^{2024}>=0\forall x\)
\(\left(\sqrt{y-1}\right)^{2023}>=0\forall y\) thỏa mãn ĐKXĐ
=>\(\left(x+1\right)^{2024}+\left(\sqrt{y-1}\right)^{2023}>=0\forall x,y\) thỏa mãn ĐKXĐ
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x+1=0\\y-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
a: \(\left|a-2b+3\right|^{2023}>=0\forall a,b\)
\(\left(b-1\right)^{2024}>=0\forall b\)
Do đó: \(\left|a-2b+3\right|^{2023}+\left(b-1\right)^{2024}>=0\forall a,b\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}a-2b+3=0\\b-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=1\\a=2b-3=2\cdot1-3=-1\end{matrix}\right.\)
Thay a=-1 và b=1 vào P, ta được:
\(P=\left(-1\right)^{2023}\cdot1^{2024}+2024=2024-1=2023\)
Sửa đề: \(5x^2+5y^2+8xy-2x+2y+2=0\)
=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)
=>\(\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
=>\(\left\{{}\begin{matrix}2x+2y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(M=\left(x-y\right)^{2023}-\left(x-2\right)^{2024}+\left(y+1\right)^{2023}\)
\(=\left(1+1\right)^{2023}-\left(1-2\right)^{2024}+\left(-1+1\right)^{2023}\)
\(=2^{2023}-1\)
\(\left(x-2022\right)^{2024}+\left|y-2023\right|\le0\left(1\right)\)
Nhận thấy : \(\left(x-2022\right)^{2024}\ge0\forall x\inℝ,\left|y-2023\right|\ge0\forall y\inℝ\)
\(=>\left(x-2022\right)^{2024}+\left|y-2023\right|\ge0\forall x,y\inℝ\)
Do đó (1) xảy ra khi :
\(\left(x-2022\right)^{2024}=0,\left|y-2023\right|=0\)
\(=>\left(x;y\right)=\left(2022;2023\right)\)
Lời giải:
Ta thấy, với mọi $x,y,z$ là số thực thì:
$(x-y+z)^2\geq 0$
$\sqrt{y^4}\geq 0$
$|1-z^3|\geq 0$
$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|\geq 0$ với mọi $x,y,z$
Kết hợp $(x-y+z)^2+\sqrt{y^4}+|1-z^3|\leq 0$
$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|=0$
Điều này xảy ra khi: $x-y+z=y^4=1-z^3=0$
$\Leftrightarrow y=0; z=1; x=-1$