K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

3n và 3n+1 là 2 số nguyên liên tiếp nên phân số 3n/3n+1 là ps tối giản

14 tháng 3 2020

Ta có : \(\frac{3n}{3n+1}\) với \(n\inℕ\)

Mà 3n và 3n+1 là 2 số tự nhiên liên tiếp

Vì 2 số tự nhiên liên tiếp có ƯCLN là 1

\(\Rightarrow\)ƯCLN(3n, 3n+1)=1 nên phân số \(\frac{3n}{3n+1}\)tối giản(đpcm)

Bạn cũng có chứng minh bằng cách tìm ƯCLN(3n,3n+1)=1 nhé!

20 tháng 4 2020

Gọi d là ƯCLN (3n;3n+1) ( d thuộc N*)

=> 3a+1-3a chia hết chi d

=> 1 chia hết cho d

mà d thuộc N* => d=1

=> \(\frac{3n}{3n+1}\)là phân số tối giản

26 tháng 2 2021

3n và 3n +1 là 2 số TN liên tiếp nên ƯCLN(3n, 3n+1)=1------>3n/3n+1 là phân số tối giản

27 tháng 7 2015

Ta có 3n; 3n + 1 là 2 số tự nhiên liên tiếp

\(\Rightarrow\) 3n; 3n + 1 là 2 số nguyên tố cùng nhau

\(\Rightarrow\frac{3n}{3n+1}\) là phân số tối giản

3 tháng 7 2016

GỌI ƯCLN(3n;3n+1)=d

=>3n chia hết cho d; 3n+1chia hết cho d

=>3n+1-3n=1chia hết cho d=> d=1

=> 3n/3n+1 là phân số tối giản

3 tháng 7 2016

Gọi ƯCLN 3n;3n+1 là d

=> 3n chia hết cho d;3n+1 chia hết cho d

=> 1chia hết cho d=> d=1

=> 3n và 3n+1 là ntố cùng nhau

=> phân số tối giản 

21 tháng 2 2016
a) 15n + 1/ 30n + 1 goi ucln cua 15n + 1/ 30n +1 la d ={15n + 1 hcia het cho d 30n + 1 chia het cho d 15n + 1 chia het cho d suy ra 4 (15n+ 1) chia het cho d (1) 30n +1 chia het cho d suy ra 2 ( 30n +1 ) (2) tu (1) va (2) theo t/c chia het mot hieu ta co 4(15n + 1)- 2(30n+1)chia het cho d 60n -4 - 60n - 2chia het cho d suy ra 1 chia het cho d suy ra d=1 vay d=1 nen UCLN( 15n +1, 30n +1) =1 vay phan so do la phan so toi gian
27 tháng 1 2021

Gọi \(\left(n+1,3n+2\right)=d\)   \(\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(n+1\right)⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3n+3⋮d\\3n+2⋮d\end{cases}}\)

\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\)

\(\Rightarrow3n+3-3n-2⋮d\)

\(\Rightarrow1⋮d\)

Mà \(d\inℕ^∗\) \(\Rightarrow d=1\)

\(\Rightarrow\left(n+1,3n+2\right)=1\)

\(\Rightarrow\) Phân số \(\frac{n+1}{3n+2}\) tối giản   (đpcm)

27 tháng 1 2021

\(\frac{n+1}{3n+2}\left(n\in Z\right)\)

Đặt \(n+1;3n+2=d\left(d\inℕ^∗\right)\)

\(n+1⋮d\Rightarrow3n+3⋮d\)(1)

\(3n+2⋮d\)(2) 

Lấy (1) - (2) suy ra : 

\(3n+3-3n-2⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

28 tháng 3 2018

Gọi d là ƯCLN của 2n + 1 và 3 n + 2

Ta có

2n+1 chia hết cho d => 3 ( 2n+1) chia hết cho d => 6n +3 chia hết cho d (1)

3n + 1 chia hết cho d => 2(3n+1) chia hết cho d => 6n + 4 Chia hết cho d ( 2 )

Từ (1), (2)

=> 6n+4 - 6n - 3 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=>  ƯCLN ( 2n + 1 : 3n + 2 ) = 1

=>  Phân số 2n+1/3n+2 tối giản với mọi n thuộc Z 

28 tháng 3 2018

Phương pháp chứng minh 1 p/s tối giản là :

Chứng minh ƯCLN của tử và mẫu = 1

Còn cách làm : Tự làm

16 tháng 2 2017

Chú ý rằng, phân số tối giản là phân số mà tử và mẫu chỉ có ước chung là ±1.

a) Gọi d là ước chung của n + 7n + 6. Ta chứng minh d = ±1 bằng cách xét hiệu (n + 7) - (n + 6) chia hết cho d.

b) Gọi d là ước chung của 3n + 2 và n +1. Ta chứng minh d = ±1 bằng cách xét hiệu (3n + 2) - 3.(n +1) chia hết cho d.

22 tháng 3 2018

Gọi \(ƯCLN\left(3n+1;3n+4\right)=d\)

\(\Rightarrow\)\(\hept{\begin{cases}3n+1⋮d\\3n+4⋮d\end{cases}}\)

\(\Rightarrow\)\(\left(3n+1\right)-\left(3n+4\right)⋮d\)

\(\Rightarrow\)\(\left(-3\right)⋮d\)

\(\Rightarrow\)\(d\inƯ\left(-3\right)=\left\{1;-1;3;-3\right\}\)

Lại có : 

\(3n⋮3\)\(;\)\(3n⋮\left(-3\right)\)

\(\Rightarrow\)\(3n+1\) không chia hết cho \(3\) và \(-3\)

\(\Rightarrow\)\(ƯCLN\left(3n+1;3n+4\right)=\left\{1;-1\right\}\)

Vậy \(\frac{3n+1}{3n+4}\) là phân số tối giản với mọi \(n\inℕ\)

Chúc bạn học tốt ~ 

22 tháng 3 2018

ban oi ban co sai de ko