M=x^{2}+5y^{2}-4xy+2x-8y+2022
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=x^2+5y^2-4xy+2x-8y+2021\)
\(=\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1+\left(y^2-4y+4\right)+2016\)
\(=\left(x-2y+1\right)^2+\left(y-2\right)^2+2016\ge2016\)
Vậy GTNN của M là 2016 đạt đươc tại \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)
\(M=x^2+5y^2-4xy+2x-8y+2018\)
\(M=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+\left(y^2-4y+4\right)+2013\)
\(M=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-2\right)^2+2013\)
\(M=\left(x-2y+1\right)^2+\left(y-2\right)^2+2013\ge2013\)
\(\Rightarrow MINM=2013\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
\(A=x^2+5y^2-4xy+2x-8y+202\)
\(=x^2+4y^2+1-4xy-4y+2x+\left(y^2-4y+4\right)+197\)
\(=\left(x-2y+1\right)^2+\left(y-2\right)^2+197\ge197\forall x;y\)
Dâu "=" xảy ra khi:
\(\hept{\begin{cases}x-2y+1=0\\y-2=0\end{cases}\Rightarrow\hept{\begin{cases}x-4+1=0\\y=2\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
Vậy min A = 197 khi \(x=3,y=2\)
Chúc bạn học tốt.
\(x^2-4xy+5y^2+2x-8y+5=\left(x-2y+1\right)^2+\left(y-2\right)^2\ge0\forall x,y\).
x2 - 4xy + 5y2 + 2x - 8y + 5
= x2 + 4y2 + 1 - 4xy + 2x - 4y + y2 - 2y + 1
= (x - 2y + 1)2 + (y - 1)2 ≥ 0
Đề yêu cầu gì thế bạn?
tổng của 2 số là 2345. Hãy tìm hai số đó