Mọi người giúp mình bài này với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)TXĐ:\(D=R\)
b)\(f\left(\dfrac{2}{3}\right)=\left(\dfrac{2}{3}\right)^2+\dfrac{2}{3}-2=-\dfrac{8}{9}\)
\(f\left(3\right)=3-2.3=-3\)
a) Ta có :
\(x - y = 5\)
\(\frac{x}{2}=\frac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{x-y}{2-3}=\frac{5}{-1}=-5\)
\(\Rightarrow\hept{\begin{cases}x=-5 . 2 = -10\\y=-5.3=-15\end{cases}}\)
b) Ta có :
\(x - y = 9\)
\(\frac{x}{-2}=\frac{y}{-5}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{x}{-2}=\frac{y}{-5}=\frac{x-y}{-2-\left(-5\right)}=\frac{9}{3}=3\)
\(\Rightarrow\hept{\begin{cases}x=3. \left(-2 \right)= -6\\y=3 . \left(-5\right) = -15\end{cases}}\)
bạn giải thích giúp mình bước 1 mấy bước sau mình sẽ tham khảo thêm cảm ơn nhiều 🙏
a. x2 - 2x
⇔ x(x - 2)
b. 3x - 6y
⇔ 3(x - 2y)
c. 5(x + 3y) - 15x(x + 3y)
⇔ (5 - 15x)(x + 3y)
d. 3(x - y) - 5x(y - x)
⇔ 3(x - y) + 5x(x - y)
⇔ (3 + 5x)(x - y)
3:
a: CD vuông góc AD
CD vuông góc SA
=>CD vuông góc (SAD)
b: BC vuông góc AB
BC vuông góc SA
=>BC vuông góc (SAB)
=>(SBC) vuông góc (SAB)
Độ dài của chiều cao là:
12:2=6(cm)
=>Diện tích hình bình hành đó là:
12x6=72(cm2)
Đáp số:72 cm2
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
EC=DB
Do đó:ΔEBC=ΔDCB
Suy ra: \(\widehat{KCB}=\widehat{KBC}\)
hay ΔKBC cân tại K
d: Xét ΔABK và ΔACK có
AB=AC
BK=CK
AK chung
Do đó: ΔABK=ΔACK
Suy ra: \(\widehat{BAK}=\widehat{CAK}\)
hay AK là tia phân giác của góc BAC
Đặt \(\sqrt{\dfrac{x^2}{x-3}}=a\left(a>=0\right)\)
Theo đề, ta có bất phương trình:
\(a^2>2a+8\)
=>(a-4)(a+2)>0
=>a-4>0
\(\Leftrightarrow\dfrac{x^2}{x-3}>16\)
\(\Leftrightarrow x^2-16x+48>0\)
\(\Leftrightarrow x\in R\)
Vậy: S=R\{3}
a: Ta có: ΔOBC cân tại O
mà OH là đường cao
nên OH là phân giác của \(\widehat{BOC}\)
=>OA là phân giác của góc BOC
Xét ΔOBA và ΔOCA có
OB=OC
\(\widehat{BOA}=\widehat{COA}\)
OA chung
Do đó: ΔOBA=ΔOCA
=>\(\widehat{OBA}=\widehat{OCA}=90^0\)
=>AC là tiếp tuyến của (O)
b: Xét (O) có
ΔCED nội tiếp
CD là đường kính
Do đó: ΔCED vuông tại E
=>CE\(\perp\)ED tại E
=>CE\(\perp\)AD tại E
Xét ΔDCA vuông tại C có CE là đường cao
nên \(AE\cdot AD=AC^2\)
mà AC=AB
nên \(AE\cdot AD=AB^2\)
c: Gọi giao điểm của ON với DE là K
Theo đề, ta có: ON\(\perp\)DE tại K
Ta có: ΔODE cân tại O
mà OK là đường cao
nên K là trung điểm của DE
Xét ΔOKA vuông tại K và ΔOHN vuông tại H có
\(\widehat{KOA}\) chung
Do đó: ΔOKA đồng dạng với ΔOHN
=>\(\dfrac{OK}{OH}=\dfrac{OA}{ON}\)
=>\(OK\cdot ON=OH\cdot OA\)(1)
Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2=OD^2\left(2\right)\)
Từ (1) và (2) suy ra \(OD^2=OK\cdot ON\)
=>\(\dfrac{OD}{OK}=\dfrac{ON}{OD}\)
Xét ΔODN và ΔOKD có
\(\dfrac{OD}{OK}=\dfrac{ON}{OD}\)
\(\widehat{DON}\) chung
DO đó: ΔODN đồng dạng với ΔOKD
=>\(\widehat{ODN}=\widehat{OKD}=90^0\)
=>DN là tiếp tuyến của (O)