cho hàm số + có đồ thị (P) và (d): y = - (m + 1)x + m + 2
a. xét sự biến thiên và vẽ (P)
b. có bao nhiên giá trị m nguyên thuộc [-10; 4]
để d cắt P tại 2 điểm A; B nằm về cùng phía trục Oy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tập xác định: D = R
y′=0 ⇔
Hàm số đồng biến trên mỗi khoảng (-1; 0) và (1; + ∞ )
Hàm số nghịch biến trên mỗi khoảng (− ∞ ; −1); (0; 1)
Hàm số đạt cực đại tại x = 0; y C Đ = 0
Hàm số đạt cực tiểu tại x = 1 hoặc x = -1; y C T = −2
Đồ thị có hai điểm uốn:
Bảng biến thiên:
Đồ thị:
Đồ thị cắt trục hoành tại:
b) Ta có: x 2 | x 2 − 2| = m
⇔ 2 x 2 | x 2 − 2| = 2m
⇔|2 x 2 ( x 2 − 2)| = 2m
⇔|2 x 4 − 4 x 2 | = 2m
Từ đồ thị hàm số y = 2 x 4 – 4 x 2 có thể suy ra đồ thị của hàm số y = |2 x 4 − 4 x 2 | như sau:
Phương trình: |2 x 4 − 4 x 2 | = 2m có 6 nghiệm phân biệt khi và chỉ khi đường thẳng y = 2m có 6 nghiệm phân biệt với đồ thị (H)
⇔ 0 < 2m < 2
⇔ 0 < m < 1
a: Thay x=-2 và y=-2 vào (d1), ta đc:
-2(2m+1)+m-3=-2
=>-4m-2+m-3=-2
=>-3m-5=-2
=>-3m=3
=>m=-1
b: Tọa độ giao của (d2) với trục hoành là:
y=0 và (2a+1)x+4a-3=0
=>x=-4a+3/2a+1
Để x nguyên thì -4a-2+5 chia hết cho 2a+1
=>\(2a+1\in\left\{1;-1;5;-5\right\}\)
=>\(a\in\left\{0;-1;2;-3\right\}\)
a) y = 4 x 3 + x, y′ = 12 x 2 + 1 > 0, ∀ x ∈ R
Bảng biến thiên:
Đồ thị:
b) Giả sử tiếp điểm cần tìm có tọa độ (x0; y0) thì f′(x0) = 12 x 0 2 + 1 = 13 (vì tiếp tuyến song song với đường thẳng (d): y = 3x + 1). Từ đó ta có: x0 = 1 hoặc x0 = -1
Vậy có hai tiếp tuyến phải tìm là y = 13x + 8 hoặc y = 13x - 8
c) Vì y’ = 12 x 2 + m nên m ≥ 0; y” = –6( m 2 + 5m)x + 12m
+) Với m ≥ 0 ta có y’ > 0 (khi m = 0; y’ = 0 tại x = 0).
Vậy hàm số (1) luôn luôn đồng biến khi m ≥ 0; y” = –6( m 2 + 5m)x + 12m
+) Với m < 0 thì y = 0 ⇔
Từ đó suy ra:
y’ > 0 với
y’ < 0 với
Vậy hàm số (1) đồng biến trên các khoảng
và nghịch biến trên khoảng
a: Tọa độ đỉnh là:
\(\left\{{}\begin{matrix}x=\dfrac{-b}{2a}=\dfrac{-1}{2}\\y=-\dfrac{b^2-4ac}{4a}=-\dfrac{1^2-4\cdot1\cdot\left(-2\right)}{4\cdot1}=-\dfrac{1+8}{4}=-\dfrac{9}{4}\end{matrix}\right.\)
Vì (P): \(y=x^2+x-2\) có a=1>0
nên (P) đồng biến khi x>-1/2 và nghịch biến khi x<-1/2
Vẽ (P):
b: Phương trình hoành độ giao điểm là:
\(x^2+x-2=-\left(m+1\right)x+m+2\)
=>\(x^2+x-2+\left(m+1\right)x-m-2=0\)
=>\(x^2+\left(m+2\right)x-m-4=0\)(1)
Để (P) cắt (d) tại hai điểm phân biệt A,B nằm về hai phía so với trục Oy thì phương trình (1) có hai nghiệm phân biệt trái dấu
=>-m-4<0
=>-m<4
=>m>-4
mà \(m\in Z;m\in\left[-10;4\right]\)
nên \(m\in\left\{-3;-2;-1;0;1;2;3;4\right\}\)
=>Có 8 số thỏa mãn