kẻ be vuông với ad tại e, kẻ mf, vuông ac tại f các đg thẳng be và mf cắt tại n. chứng minh ancm là hình thoi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình bn tự vẽ nha
a, Xét hai tam giác vuông AME và AMF có :
AM là cạnh chung
\(\widehat{EAM} = \widehat{FAM}\) ( do AM là tia phân giác góc A )
=> tam giác AME = tam giác AMF ( cạnh huyền - góc nhọn )
=> ME = MF ( hai cạnh tương ứng )
b,Do AC // BM
mà IF vuông góc CA
=> FI vuông góc với BI ( tính chất đường vuông góc )
Do ME vuông góc AB
MI vuông góc BI
=> AB // BI ( tính chất hai đường thẳng // )
Xét hai tam giác vuông MEB và MIB có
BM là cạnh chung
\(\widehat{EMB} = \widehat{MBI}\) ( hai góc so le trong )
=> tam giác MEB = tam giác MIB ( cạnh huyền - góc nhọn )
=> BE = Bi ( hai cạnh tương ứng )
Xét tam giác ABM và tam giác ACM
có : + AB = AC (gt)
+ BM = CM (gt)
+) AM chung
=> tam giác ABM = tam giác ACM (c.c.c)
=> góc A1 = góc A2
Xét tam giác AEM và tam giác AFM có :
+) góc AME = góc AMF (Vì góc MEA = MFA (= 90o) ; góc A1 = góc A2 => góc MEA - góc A1 = góc MFA - góc A2 => <AME = <AMF)
+ góc A1 = góc A2
+) AM chung
=> Tam giác AEM = Tam giác AFM (g.c.g)
=> ME = MF (cạnh tương ứng)
=> AE = AF
b) Gọi K là giao điểm của AM và EF
Xét tam giác AEK và tam giác AFK có
+) góc A1 = góc A2
+) AF = AE (cmt)
+) AK chung
=> tam giác AEK = tam giác AFK (c.g.c)
=> EK = FK (cạnh tương ứng)
=> góc AKE = góc AKF (góc tương ứng)
Lại có góc AKE + góc AKF = 180 o
=> góc AKE = góc AKF = 90o
mà EK = FK
=> AK là trung trực của EF
mà K \(\in\)AM
=> AM là trung trực của EF
c) Vì tam giác ABM = tam giác ACM (cmt)
=> góc AMB = góc AMC
Mà góc AMB + góc AMC = 180 o
=> góc AMB = góc AMC = 90o
lạ có MC = MB = 1/2BC
=> AM là trung trực của BC (1)
Vì góc AMB = góc AMC = 90o
mà góc AMB + góc BMD = góc AMC + góc CMD (=180o)
=> góc BMD = góc CMD = 90o
lại có BM = CM = 1/2BC
=> MD là trung trực của BC (2)
Từ (1) (2) => A;M;D thẳng hàng
a) _ Xét tam giác AME và tam giác AMF có :
E = F ( = 90 độ)
AM là cạnh huyền chung
A1=A2 ( AM là tia phân giác của BAC)
suy ra : tam giác AME = tam giác AMF ( CH-GN)
suy ra AE = AF ( 2 cạnh tương ứng)
suy ra tam giác AEF cân tại A
vẽ hình tạm nha
~ chúc bn học tốt~
a,
áp dụng đl pytago:
\(CD^2=12^2+16^2=400\\ \Rightarrow CD=\sqrt{400}=20cm\)
\(AM=\dfrac{CD}{2}=\dfrac{20}{2}=10cm\)
b, xét tứ giác AFME có:
góc MFA= FAD=MEA=90\(^o\)
=> AFME là hcn
d,
xét tam giác ACD có đường tb FM(gt)
=>FM// và =AE
mà AE=AB và A nằm trên BE
=>FM// và =BA
vậy tứ giác ABMF là hình bình hành
Ta có:MN=EN=DF=FN\(=\dfrac{AM}{2}\)
=>\(\widehat{END}=\widehat{ENM}+\widehat{MND}\)
=\(2\widehat{EAM}=2\widehat{DAE}=60^o\)
lại có :\(\widehat{DNF}=\widehat{MNF}-\widehat{MND}\)
=> \(2\widehat{MAC}-2\widehat{MAD}=2\widehat{DAC}=60^o\)
Có tam giác NED ,NDF là tam giác đều
Từ đó suy ra : EN=FN=DF=DF
Vậy DENF là hình thoi (đpcm).
a: BC=15cm
=>AM=7,5cm
b: Xét tứ giác AEMF có góc AEM=góc AFM=góc FAE=90 độ
nên AEMF là hình chữ nhật
Bạn ghi đầy đủ đề đi bạn