K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2023

dễ

 

13 tháng 11 2023

          Dùng phương pháp phản chứng em nhé.

Giả sử tồn tại một số chính phương n thỏa mãn đề bài khi đó

Vì n là số chính phương nên n chia 3 chỉ có thể dư 1 hoặc không dư (tính chất của số chính phương)

Mặt khác ta lại có: Tổng các chữ số của n là 2024

2024 : 3 = 674 dư 2

⇒  A : 3 dư 2 (trái với giải thiết) 

Vậy điều giả sử là sai nên không tồn tại số tự nhiên n nào thỏa mãn đề bài.

            Kết luận n \(\in\) \(\varnothing\) 

 

AH
Akai Haruma
Giáo viên
13 tháng 11 2023

Lời giải:

Tổng các chữ số của $n$ là $2024$. Ta có $2+0+2+4=8$ nên $n$ chia cho $9$ dư $8$.

Mà 1 số chính phương khi chia cho $9$ dư $0,1,4,7$ nên không tồn tại $n$ thỏa mãn đề.

2 tháng 2 2015

3.a)n và 2n có tổng các chữ số bằng nhau => hiệu của chúng chia hết cho 9

mà 2n-n=n=>n chia hết cho 9 => đpcm

16 tháng 1 2017

câu 1 bạn châu sai rồi

16 tháng 6 2018

10 \(\le\)\(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298

Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương

=> 2n + 1 thuộc { 25 ; 49  ; 81 ; 121 ;  169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )

Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298

=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )

Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương

29 tháng 11 2018

bài cô giao đi hỏi 

12 tháng 11 2017

mình lớp 5

28 tháng 8 2021

Không tồn tại vì: 2009 chia 3 dư 2 \(\Rightarrow\) số đó chia 3 dư 2 \(\Rightarrow\) không là số chính phương

28 tháng 8 2021

Vì sao lại suy ra thế bạn có thể viết cụ thể hơn ko