Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(ab)^2=(a+b)^3
Từ đó suy ra (ab) phải là lập phương của 1 số, a+b là bình phương của 1 số
(ab) = 27 hoặc 64
chỉ có 27 thỏa mãn
vậy (ab)=27
Câu c bạn tham khảo tại đây:
Câu hỏi của Edogawa Conan - Toán lớp 6 - Học toán với OnlineMath
Xét \(n>3\), khi đó \(n⋮̸3\), dẫn đến \(n^{2024}\) chia 3 dư 1 (số chính phương khi chia cho 3 chỉ có thể dư 0 hoặc 1 nhưng do n không chia hết cho 3 nên chỉ có thể suy ra \(n^{2024}\) chia 3 dư 1)
Suy ra \(n^{2024}+1\) chia 3 dư 2. Do đó nó không thể là số chính phương.
Xét \(n=2\), khi đó \(2^{2024}+1=\left(2^{1012}\right)^2+1>\left(2^{1012}\right)^2\)
Đồng thời \(\left(2^{1012}\right)^2+1< \left(2^{1012}\right)^2+2.2^{1012}+1=\left(2^{1012}+1\right)^2\)
Do đó \(\left(2^{1012}\right)^2< 2^{2024}+1< \left(2^{1012}+1\right)^2\), hay \(2^{2024}+1\) không thể là số chính phương.
Xét \(n=3\), khi đó \(3^{2024}+1=\left(3^{1012}\right)^2+1>\left(3^{1012}\right)^2\)
Và \(\left(3^{1012}\right)^2+1< \left(3^{1012}\right)^2+2.3^{1012}+1=\left(3^{1012}+1\right)^2\)
Do đó \(\left(3^{1012}\right)^2< 3^{2024}+1< \left(3^{1012}+1\right)^2\), hay \(3^{2024}+1\) không thể là số chính phương.
Vậy, với mọi số nguyên tố \(n\) thì \(n^{2024}+1\) không thể là số chính phương.