Tìm x và y biết
X^2 +4y^2 - 4x - 4y + 5 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(x^2+4y^2-4x-4y+5=0\)
\(\Leftrightarrow\)\(\left(x^2-4x+4\right)+\left(4y^2-4y+1\right)=0\)
\(\Leftrightarrow\)\(\left[x^2-2.x.2+2^2\right]+\left[\left(2y\right)^2-2.2y.1+1^2\right]=0\)
\(\Leftrightarrow\)\(\left(x-2\right)^2+\left(2y-1\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-2\right)^2=0\\\left(2y-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=2\\2y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}}\)
Vậy \(x=2\) và \(y=\frac{1}{2}\)
Chúc bạn học tốt ~
\(x^2+4y^2-4x-4y+5=0\)
\(\Leftrightarrow\)\(\left(x^2-4x+4\right)+\left(4y^2-4y+1\right)=0\)
\(\Leftrightarrow\)\(\left(x-2\right)^2+\left(2y-1\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)
Vậy
a) \(x^2-10x+4y^2-4y+26=0\)
\(\Leftrightarrow\left(x^2-10x+25\right)+\left(4y^2-4y+1\right)=0\)
\(\Leftrightarrow\left(x-5\right)^2+\left(2y-1\right)^2=0\)
Mà \(\Leftrightarrow\left(x-5\right)^2+\left(2y-1\right)^2\ge0\)
Dấu "="\(\Leftrightarrow\hept{\begin{cases}x-5=0\\2y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=\frac{1}{2}\end{cases}}\)
<=> (\(x^2\)-4x+4)+(\(4y^2\)-4y+1)=0
<=> \(\left(x-2\right)^2\)+\(\left(2y-1\right)^2\)=0
=> \(\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}}\)=>\(\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)
a) \(x^2+4y^2-6x-4y+10=0\)
\(\Leftrightarrow\left(x^2-6x+9\right)+\left(4y^2-4y+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(2y-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-3=0\\2y-1=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=3\\y=\frac{1}{2}\end{cases}}\)
b) \(2x^2+y^2+2xy-10x+25=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-10x+25\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x-5\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x-5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-5\\x=5\end{cases}}\)
c) \(x^2+2xy+4x-4y-2xy+5=0\)
\(\Leftrightarrow x^2-4x-4y+5=0\)
Xem lại đề câu c).
a) x2 + 4y2 - 6x - 4y + 10 = 0
<=> x2 - 6x + 9 + 4y2 - 4y + 1 = 0
<=> ( x - 3 )2 + ( 4y - 1 )2 = 0
<=> \(\hept{\begin{cases}x-3=0\\4y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=\frac{1}{4}\end{cases}}\)
b) 2x2 + y2 + 2xy - 10x + 25 = 0
<=> x2 + 2xy + y2 + x2 - 10x + 25 = 0
<=> ( x + y )2 + ( x - 5 )2 = 0
<=> \(\hept{\begin{cases}x+y=0\\x-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=0\\x=5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-5\\x=5\end{cases}}\)
c) Xem lại đề
\(x^2+4y^2-4x-4y+5=0\)
\(\Leftrightarrow x^2-4x+4+4y^2-4y+1=0\)
\(\Leftrightarrow\left(x^2-2\cdot x\cdot2+2^2\right)+\left[\left(2y\right)^2-2\cdot2y\cdot1+1^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(2y-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}}\)
Vậy....
b) 4x^2+y^2-20x-2y+26=0;
(4x^2-20x+25)+(y^2-2y+1)=(2x-5)^2+(y-1)^2=0
<=>x=5/2; y=1
(x^2-4x+4)+(4y^2-4y+1)=0
(x-2)^2+(2y-1)^2=0
suy ra (x-2)^2=0 suy ra x=2
và (2y-1)^2 =0 suy ra y=1/2=0,5