Tính: \(B=\dfrac{-1}{99}+\dfrac{1}{99.98}-\dfrac{1}{98.97}-...-\dfrac{1}{2.1}\)
Giải chi tiết dùm mình nhe. Thanks
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{1}{99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(P=\dfrac{1}{99}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{97.98}+\dfrac{1}{98.99}\right)\)
\(P=\dfrac{1}{99}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{97}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{99}\right)\)
\(P=\dfrac{1}{99}-\left(1-\dfrac{1}{99}\right)\)
\(P=\dfrac{1}{99}-\dfrac{98}{99}=-\dfrac{97}{99}\)
Xong !
Giải:
\(\dfrac{1}{99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-\dfrac{1}{97.96}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(=\dfrac{1}{99}-\left(\dfrac{1}{99.98}+\dfrac{1}{98.97}+\dfrac{1}{97.96}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)
\(=\dfrac{1}{99}-\left(\dfrac{1}{99}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{97}+\dfrac{1}{97}-\dfrac{1}{96}+...+\dfrac{1}{3}-\dfrac{1}{2}+\dfrac{1}{2}-1\right)\)
\(=\dfrac{1}{99}-\left(\dfrac{1}{99}-1\right)\)
\(=\dfrac{1}{99}-\dfrac{-98}{99}\)
\(=\dfrac{1}{99}+\dfrac{98}{99}\)
\(=\dfrac{99}{99}=1\)
Chúc bạn học tốt!
\(\dfrac{1}{99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-\dfrac{1}{97.96}-...-\dfrac{1}{3.2}+\dfrac{1}{2.1}\)
=\(\dfrac{1}{99}-\dfrac{1}{99}+\dfrac{1}{98}-\dfrac{1}{98}-\dfrac{1}{98}+\dfrac{1}{97}-\dfrac{1}{97}+\dfrac{1}{96}-\dfrac{1}{96}+...+\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{2}+1\)
=\(0+1\)
=\(1\)
Bạn học tốt^^
\(A=\dfrac{1}{100}-\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{99}+\dfrac{1}{98}-\dfrac{1}{98}+\dfrac{1}{97}-...-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{2}+1\\ =\dfrac{1}{100}+1=\dfrac{101}{100}\)
\(A=\dfrac{1}{100}-\dfrac{1}{100.99}-\dfrac{1}{99.98}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(A=\dfrac{1}{100}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)\)
\(A=\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(A=\dfrac{1}{100}-\left(1-\dfrac{1}{100}\right)\)
\(A=\dfrac{1}{100}-\dfrac{99}{100}=\dfrac{-49}{50}\)
\(A=\dfrac{1}{100}-\dfrac{1}{100.99}-...-\dfrac{1}{2.1}\\ =\dfrac{1}{100}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)\\ =\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =\dfrac{1}{100}-\left(1-\dfrac{1}{100}\right)\\ =\dfrac{1}{100}-\dfrac{99}{100}\\ =\dfrac{-98}{100}\\ =-\dfrac{49}{100}\)
\(A=\dfrac{1}{100}-\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(=\dfrac{1}{100}-\left(\dfrac{1}{100.99}+\dfrac{1}{99.98}+\dfrac{1}{98.97}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)
\(=\dfrac{1}{100}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{97.98}+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)
\(=\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{97}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{100}-\left(1-\dfrac{1}{100}\right)\)
\(=-\dfrac{49}{50}\)
C= \(\dfrac{1}{100}-\)(\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+...+\(\dfrac{1}{98.99}\)+\(\dfrac{1}{99.100}\)
\(=\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
=\(\dfrac{1}{100}-\left(1-\dfrac{1}{100}\right)\)
= \(\dfrac{1}{100}-\dfrac{99}{100}\)
=\(\dfrac{-98}{100}=-\dfrac{49}{50}\)
Ta có:
\(=\dfrac{1}{100}-\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{99}+\dfrac{1}{98}-\dfrac{1}{98}+......+\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{2}+1\)
sau khi giản ước ta được như sau:
=\(\dfrac{1}{100}-1\)=\(\dfrac{-99}{100}\)
Lời giải:
Đặt \(A=\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-....-\frac{1}{3.2}-\frac{1}{2.1}\)
\(\Rightarrow A+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}=\frac{1}{99.100}\)
\(\Leftrightarrow A+\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{98-97}{97.98}+\frac{99-98}{98.99}=\frac{1}{99.100}\)
\(\Leftrightarrow A+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}=\frac{1}{99.100}\)
\(\Leftrightarrow A+1-\frac{1}{98}=\frac{1}{99.100}\Rightarrow A=\frac{1}{9900}-\frac{97}{98}\)
a,\(\dfrac{1}{3}-\dfrac{3}{5}+\dfrac{5}{7}-\dfrac{7}{9}+\dfrac{9}{11}-\dfrac{11}{13}+\dfrac{13}{15}+\dfrac{11}{13}-\dfrac{9}{11}+\dfrac{7}{9}-\dfrac{5}{7}+\dfrac{3}{5}-\dfrac{1}{3}\)
\(=\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(-\dfrac{3}{5}+\dfrac{3}{5}\right)+.....+\left(-\dfrac{11}{13}+\dfrac{11}{13}\right)+\dfrac{13}{15}\)
\(=0+0+...0+0+\dfrac{13}{15}=\dfrac{13}{15}\)
câu b và c xem lại đề nha
Chúc bạn học tốt!!!
\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{125}{376}\)
\(\Leftrightarrow\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{125}{376}\)
\(\Leftrightarrow\dfrac{1}{3}\left(1-\dfrac{1}{x+3}\right)=\dfrac{125}{376}\left(x\ne0;x\ne-3\right)\)
\(\Leftrightarrow\dfrac{x+3-1}{x+3}=\dfrac{3.125}{376}\Leftrightarrow\dfrac{x+2}{x+3}=\dfrac{3.125.}{376}.\dfrac{\left(x+3\right)}{x+3}\)
\(\Leftrightarrow376\left(x+2\right)=3.125.\left(x+3\right)\)
\(\Leftrightarrow376x+752=375x+1125\)
\(\Leftrightarrow376x-375x=1125-752\Leftrightarrow x=373\left(x\in N^{\cdot}\right)\)
\(B=\dfrac{-1}{99}+\dfrac{1}{99\cdot98}-\dfrac{1}{98\cdot97}-...-\dfrac{1}{2\cdot1}\)
\(=\dfrac{-1}{99}+\dfrac{1}{98\cdot99}-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{97\cdot98}\right)\)
\(=-\dfrac{2}{99}+\dfrac{1}{98}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{97}-\dfrac{1}{98}\right)\)
\(=-\dfrac{2}{99}+\dfrac{1}{98}-\dfrac{97}{98}=\dfrac{-2}{99}-\dfrac{23}{49}=\dfrac{-2375}{4851}\)