So sánh: 2023^20 và 20232023^10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(A\text{=}\dfrac{2023^{2023}}{2023^{2024}}\text{=}\dfrac{1}{2023}\)
và \(B\text{=}\dfrac{2023^{2022}}{2023^{2023}}\text{=}\dfrac{1}{2023}\)
\(\Rightarrow A\text{=}B\)
Ta có :
A=\(\dfrac{2023^{2023}}{2023^{2024}}\)=\(\dfrac{2023^{2022}.2023}{2023^{2023}.2023}\)=\(\dfrac{2023^{2022}}{2023^{2023}}\)
Mà B=\(\dfrac{2023^{2023}}{2023^{2024}}\)
Vậy A=B
2023²⁰²³ - 2023²⁰²² = 2023²⁰²².(2023 - 1) = 2023²⁰²².2022
2023²⁰²² - 2022²⁰²¹ = 2023²⁰²¹.(2023 - 1) = 2023²⁰²¹.2022
Do 2022 > 2021 ⇒ 2023²⁰²² > 2023²⁰²¹
⇒ 2023²⁰²².2022 > 2023²⁰²¹.2022
Vậy 2023²⁰²³ - 2023²⁰²² > 2023²⁰²² - 2023²⁰²¹
Ta có :
\(\dfrac{10^{2023}}{10^{2024}}=\dfrac{10^{2022}}{10^{2023}}\)
mà \(\dfrac{10^{2023}}{10^{2024}}>\dfrac{10^{2023}-3}{10^{2024}-3}\)
\(\dfrac{10^{2022}}{10^{2023}}< \dfrac{10^{2022}+1}{10^{2023}+1}\)
\(\Rightarrow\dfrac{10^{2023}-3}{10^{2024}-3}< \dfrac{10^{2022}+1}{10^{2023}+1}\)
\(A=\dfrac{10^{2024}+1}{10^{2023}+1}=\dfrac{10\left(10^{2023}+1\right)}{10^{2023}+1}-\dfrac{9}{10^{2023}+1}=1-\dfrac{9}{10^{2023}+1}\)
\(B=\dfrac{10^{2023}+1}{10^{2022}+1}=\dfrac{10\left(10^{2022}+1\right)}{10^{2022}+1}-\dfrac{9}{10^{2022}+1}=1-\dfrac{9}{10^{2022}+1}\)
Vì \(\dfrac{9}{10^{2023}+1}< \dfrac{9}{10^{2022}+1}\)
\(\Rightarrow A>B\)
Để chứng minh rằng tồn tại một số có dạng 20232023...2023 chia hết cho 19, ta sẽ chứng minh rằng tồn tại một số nguyên n sao cho số nguyên s có dạng sau chia hết cho 19:
s = 20232023...2023 (n chữ số 2023)
Ta có thể biểu diễn s dưới dạng:
s = 2023 x 10⁰ + 2023 x 10¹ + 2023 x 10² + ... + 2023 x 10^(n-1)
= 2023 x (10⁰ + 10¹ + 10² + ... + 10^(n-1))
Để dễ dàng chứng minh, ta sẽ tính tổng sau đây:
10⁰ + 10¹ + 10² + ... + 10^(n-1) = (10⁰ - 1) + (10¹ - 1) + (10² - 1) + ... + (10^(n-1) - 1) + n
= 111...1 (n số 1) + n
= (n + 1) x 111...1 (n số 1)
Do đó:
s = 2023 x (n + 1) x 111...1 (n số 1)
Ta có thể dễ dàng thấy rằng 19 chia hết cho 2023, do đó ta chỉ cần chứng minh rằng (n + 1) x 111...1 (n số 1) chia hết cho 19.
Ta có:
111...1 (n số 1) = (10⁰ + 10¹ + 10² + ... + 10^(n-1)) / 9
= [(10⁰ - 1) + (10¹ - 1) + (10² - 1) + ... + (10^(n-1) - 1)] / 9
= [(n + 1) x 111...1 (n số 1)] / 9
Do đó:
s = 2023 x (n + 1) x [(n + 1) x 111...1 (n số 1)] / 9
= 19 x 1064819 x (n + 1) x [(n + 1) x 111...1 (n số 1)] / (19 x 9)
Như vậy, ta chỉ cần chọn một số nguyên n sao cho (n + 1) x 111...1 (n số 1) chia hết cho 19. Vì 19 là số nguyên tố và không chia hết cho 3, nên ta có thể chọn n = 18, để (n + 1) x 111...1 (n số 1) chia hết cho 19. Vì vậy, tồn tại một số có dạng 20232023...2023 (18 chữ số 2023) chia hết cho 19.
b) \(M=\dfrac{10^{2023}+1}{10^{2024}+1}< 1\) ( Vì tử < mẫu )
Ta có: \(M=\dfrac{10^{2023}+1}{10^{2024}+1}< \dfrac{10^{2023}+1+9}{10^{2024}+1+9}=\dfrac{10^{2023}+10}{10^{2024}+10}=\dfrac{10.\left(10^{2022}+1\right)}{10.\left(10^{2023}+1\right)}=\dfrac{10^{2022}+1}{10^{2023}+1}=N\)
Vì \(\dfrac{10^{2023}+1}{10^{2024}+1}< \dfrac{10^{2022}+1}{10^{2023}+1}\) nên \(M< N\)
\(2023^{20}=\left(2023^2\right)^{10}=4092529^{10}\)
4092529<20232023
=>\(4092529^{10}< 20232023^{10}\)
=>\(2023^{20}< 20232023^{10}\)