Phân tích đa thức thành nhân tử (Dùng phương pháp thêm bớt hạng tử)
\(2x^4+128y^4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=x^4+2x^2+1-\left(\sqrt{2}x\right)^2\)
\(=\left(x^2+1\right)^2-\left(\sqrt{2}x\right)^2\)
\(=\left(x^2+1-\sqrt{2}x\right)\left(x^2+1+\sqrt{2}x\right)\)
\(x^4+1\)
\(=x^4+2x^2+1-2x^2\)
\(=\left(x^2+1\right)^2-\left(x\sqrt{2}\right)^2\)
\(=\left(x^2-x\sqrt{2}+1\right)\left(x^2+x\sqrt{2}+1\right)\)
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha
x5-x4-1=x5-x3-x2-x4+x2+x+x3-x-1
=x2.(x3-x-1)-x.(x3-x-1)+(x3-x-1)
=(x3-x-1)(x2-x+1)
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha
\(x^4+1\)
\(=x^4+2x^2+1-2x^2\)
\(=\left(x^2+1\right)^2-2x^2\)
\(=\left(x^2-\sqrt{2}x+1\right)\left(x^2+\sqrt{2}x+1\right)\)
\(x^4+2x^2-24\)
\(=x^4-4x^2+6x^2-24\)
\(=x^2\left(x^2-4\right)+6\left(x^2-4\right)\)
\(=\left(x^2+6\right)\left(x^2-4\right)\)
\(=\left(x^2+6\right)\left(x-2\right)\left(x+2\right)\)
\(x^8+x^4+1\)
\(=x^4.\left(x^4+1\right)+\left(x^4+1\right)-x^4\)
\(=\left(x^4+1\right).\left(x^4+1\right)-\left(x^2\right)^2\)
\(=\left(x^4+1\right)^2-\left(x^2\right)^2\)
\(=\left(x^4+1-x^2\right).\left(x^4+1+x^2\right)\)
\(x^4+81\)
\(=x^4+3^4\)
\(=\left(x^2+3^2\right)^2-2x^23^2\)
\(=\left(x^2+\sqrt{2}x3+3^2\right)\left(x^2-\sqrt{2}x3+3^2\right)\)
nguồn gg
\(x^4+81\)
\(=x^4+18x^2+81-18x^2\)
\(=\left(x^2+9\right)^2-18x^2\)
\(=\left(x^2-3\sqrt{2}x+9\right)\left(x^2+3\sqrt{2}x+9\right)\)
\(2x^4+128y^4\)
\(=2x^4+2.\left(8y^2\right)^2\)
\(=2\left[x^4+\left(8y^2\right)^2\right]\)
\(=2\left[x^4+2x^28y^2+\left(8y^2\right)^2-2x^28y^2\right]\)
\(=2\left[\left(x^2+8y^2\right)^2-\left(4xy\right)^2\right]\)
\(=2\left(x^2-4xy+8y^2\right)\left(x^2+4xy+8y^2\right)\)
2x4+128x^4
2x^4+2.(8y^2)^2
2.(x^4+(8y^2)^2)
2.((x^2)^2+2.x^2.8y^2+(8y^2)^2-2x^2.8y^2)
2.(x^2+8y^2)-(4.x.y)^2
2.((x^2+8y^2)-4xy).((x^2+8y^2)+4xy)
2.(x^2+8y^2-4xy).(x^2+8y^2+4xy)