cứu tuiiiiiii,tui tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10: \(\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2\)
\(=\left(\sqrt{3-\sqrt{5}}\right)^2+\left(\sqrt{3+\sqrt{5}}\right)^2+2\cdot\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\)
\(=3-\sqrt{5}+3+\sqrt{5}+2\cdot\sqrt{9-5}\)
\(=6+2\cdot2=10\)
11: \(\left(\sqrt{\sqrt{7}+\sqrt{3}}+\sqrt{\sqrt{7}-\sqrt{3}}\right)^2\)
\(=\left(\sqrt{\sqrt{7}+\sqrt{3}}\right)^2+\left(\sqrt{\sqrt{7}-\sqrt{3}}\right)^2+2\cdot\sqrt{\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}\)
\(=\sqrt{7}+\sqrt{3}+\sqrt{7}-\sqrt{3}+2\cdot\sqrt{7-3}\)
\(=2\sqrt{7}+2\cdot2=2\sqrt{7}+4\)
12: \(\left(\sqrt{\sqrt{11}+\sqrt{7}}-\sqrt{\sqrt{11}-\sqrt{7}}\right)^2\)
\(=\left(\sqrt{\sqrt{11}+\sqrt{7}}\right)^2+\left(\sqrt{\sqrt{11}-\sqrt{7}}\right)^2-2\cdot\sqrt{\left(\sqrt{11}-\sqrt{7}\right)\left(\sqrt{11}+\sqrt{7}\right)}\)
\(=\sqrt{11}+\sqrt{7}+\sqrt{11}-\sqrt{7}-2\cdot\sqrt{11-7}\)
\(=2\sqrt{11}-4\)
13:
\(\sqrt{\sqrt{2}-1}\cdot\sqrt{2-\sqrt{3-\sqrt{2}}}\cdot\sqrt{2+\sqrt{3-\sqrt{2}}}\)
\(=\sqrt{\sqrt{2}-1}\cdot\sqrt{4-\left(3-\sqrt{2}\right)}\)
\(=\sqrt{\sqrt{2}-1}\cdot\sqrt{\sqrt{2}+1}\)
\(=\sqrt{2-1}=1\)
14:
\(\sqrt{4+\sqrt{8}}\cdot\sqrt{2+\sqrt{2+\sqrt{2}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2}}}\)
\(=\sqrt{4+2\sqrt{2}}\cdot\sqrt{\left(2+\sqrt{2+\sqrt{2}}\right)\left(2-\sqrt{2+\sqrt{2}}\right)}\)
\(=\sqrt{4+2\sqrt{2}}\cdot\sqrt{4-2-\sqrt{2}}\)
\(=\sqrt{\left(4+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}\)
\(=\sqrt{8-4\sqrt{2}+4\sqrt{2}-4}=\sqrt{4}=2\)
12 phút 48 giây = 768
3,4 giờ = 3 giờ 24 phút
5,7 giờ = 5 giờ 42 phút
\(\dfrac{5}{6}\)phút = 50 giây
12 phút 48 giây = 12 phút + \(\dfrac{48}{60}\) phút = 12,8 phút
3,4 giờ = 3 giờ + 60 phút \(\times\) 0,4 = 3 giờ 24 phút
5,7 giờ = 5 giờ + 60 phút \(\times\) 0,7 = 5 giờ 42 phút
\(\dfrac{5}{6}\) phút = \(60\) giây \(\times\) \(\dfrac{5}{6}\) = 50 giây
\(\text{Giải:}\)
\(\text{Gọi x là số sách cần tìm}\left(x\inℕ^∗;100\le x\le200\right)\)
\(\text{Ta có}:x:3\text{dư}1\Rightarrow x+1⋮3\)
\(\text{x:5 dư 1 => x+1 5}\text{x:5 dư 1 => x+1 5}\text{dư}1\Rightarrow x+1⋮5\)
\(x:7\text{dư}1\Rightarrow x+1⋮7\)
\(\text{=> x+1 BC(3,5,7)}\)
\(\text{Ta lại có 3,5,7 nguyên tố cùng nhau từng đôi một}\)
\(\text{=> BCNN(3,5,7) = 3.5.7 = 105}\)
\(\)\(\)\(\)\(\Rightarrow BC\left(3,5,7\right)=B\left(105\right)=\left\{0;105;210;...\right\}\)
\(\Rightarrow x\in\left\{0;105;210;...\right\}\)
\(\text{Mà}100\le x\le200\Rightarrow x=105\)
\(\text{Vậy trường X mua về 105 quyển sách.}\)
1: \(A=\sqrt{\dfrac{2}{3}}-\sqrt{24}+2\cdot\sqrt{\dfrac{3}{8}}+\sqrt{\dfrac{1}{6}}\)
\(=\sqrt{\dfrac{6}{9}}-2\sqrt{6}+2\cdot\sqrt{\dfrac{6}{16}}+\sqrt{\dfrac{6}{36}}\)
\(=\dfrac{1}{3}\sqrt{6}-2\sqrt{6}+\dfrac{1}{2}\sqrt{6}+\dfrac{1}{6}\sqrt{6}\)
\(=-\sqrt{6}\)
2: \(A=\sqrt{150}+\sqrt{96}+\dfrac{9}{2}\cdot\sqrt{2\dfrac{2}{3}}-\sqrt{6}\)
\(=5\sqrt{6}+4\sqrt{6}+\dfrac{9}{2}\cdot\sqrt{\dfrac{8}{3}}-\sqrt{6}\)
\(=8\sqrt{6}+\dfrac{9}{2}\cdot\dfrac{2\sqrt{2}}{\sqrt{3}}\)
\(=8\sqrt{6}+3\sqrt{3}\cdot\sqrt{2}=11\sqrt{6}\)
3: \(A=2\sqrt{45}+\sqrt{32}-2\sqrt{20}-\dfrac{9}{2}\cdot\sqrt{8}\)
\(=2\cdot3\sqrt{5}+4\sqrt{2}-2\cdot2\sqrt{5}-\dfrac{9}{2}\cdot2\sqrt{2}\)
\(=6\sqrt{5}-4\sqrt{5}+4\sqrt{2}-9\sqrt{2}\)
\(=2\sqrt{5}-5\sqrt{2}\)
4: \(A=\sqrt{75}-\dfrac{1}{2}\cdot\sqrt{48}+\sqrt{300}-\sqrt{147}\)
\(=5\sqrt{3}-\dfrac{1}{2}\cdot4\sqrt{3}+10\sqrt{3}-7\sqrt{3}\)
\(=8\sqrt{3}-2\sqrt{3}=6\sqrt{3}\)
5: \(A=\sqrt{54}+2\sqrt{24}-\dfrac{3}{2}\cdot\sqrt{96}-\sqrt{216}\)
\(=3\sqrt{6}+2\cdot2\sqrt{6}-6\sqrt{6}-\dfrac{3}{2}\cdot4\sqrt{6}\)
\(=-3\sqrt{6}+4\sqrt{6}-6\sqrt{6}\)
\(=-5\sqrt{6}\)
6: \(A=3\sqrt{50}-2\sqrt{75}-4\cdot\dfrac{\sqrt{54}}{\sqrt{3}}-3\sqrt{\dfrac{1}{3}}\)
\(=3\cdot5\sqrt{2}-2\cdot5\sqrt{3}-4\cdot\sqrt{18}-\sqrt{3}\)
\(=15\sqrt{2}-10\sqrt{3}-12\sqrt{2}-\sqrt{3}\)
\(=3\sqrt{2}-11\sqrt{3}\)