Cho A = \(\dfrac{1001}{1000^2+1}\)+\(\dfrac{1001}{1000^2+2}\)+\(\dfrac{1001}{1000^2+3}\)+...+\(\dfrac{1001}{1000^2+1000}\)
Chứng minh rằng 1<\(^{A^2}\)<4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1001}{1000^2+1}+\dfrac{1001}{1000^2+2}+....+\dfrac{1001}{1000^2+1000}\)
\(CMR:1< A^2< 4\)
Tổng A có 1000 số hạng.
�>100110002+1000.1000=1001.10001000(1000+1)=1A>10002+10001001.1000=1000(1000+1)1001.1000=1
�<100110002.1000=10011000=1+11000<2A<100021001.1000=10001001=1+10001<2
Vậy 1<�<2⇒12<�2<22⇒1<�2<41<A<2⇒12<A2<22⇒1<A2<4
Chúc bạn học tốt.
Tổng A có 1000 số hạng
A>(1001/1000^2+1000)*1000=1001*1000/1000*(1000+1)=1
A<(1001/1000^2)*1000=1001/1000=1+1/1000<1
Vậy 1<A<2 nên 1<A^2<4