CMR của bốn số nguyên chẵn liên tiếp cộng với 16 luôn là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)
Ta có : x (x+1) (x+2 ) (x+3 ) +1
=( x2 + 3x ) (x2 + 2x + x +2 ) +1
= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)
Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2
=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương
hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương
Gọi 4 số tự nhiên chẵn liên tiếp đó lần lượt là x; x+2; x+4; x+6. Ta có:
x(x+2)(x+4)(x+6) + 16
= x(x+6)(x+2)(x+4) + 16
= ( x2 + 6x)( x2+6x+8) + 16 (*)
Đặt x2 + 6x= a. Thay vào (*) ta lại có
(*) = a (a+8) + 16= a2 + 8a + 16= ( a+4)2
Thay a= x2 + 6x vào ta có:
(*)= ( x2 + 6x + 4)2
Do x là số tự nhiên nên \(x^2+6x+4\) cũng là một số tự nhiên.
Vậy tổng của tích 4 số tự nhiên chẵn liên tiếp với 16 là 1 số chính phương
BÀI GIẢI
Gọi 4 số liên tiếp là 2a ; 2a + 2 ; 2a + 4 ; 2a + 6.
Tích của chúng là 2a(2a + 2)(2a + 4)(2a + 6)
Ta có :
A = 2a(2a + 2)(2a + 4)(2a + 6) + 16
A = (4a^2 +4a)(4a^2 + 12a + 8a + 24) + 16
A = (4a^2 +4a)(4a^2 + 20a + 24) + 16
A = 16a^4 + 80a^3 + 96a^2 + 16a^3 + 80a^2 + 96a +16
A = 16a^4 + 96a^3 + 176a^2 + 96a +16
A = 16a^4 + 48a^3 + 16a^2 + 48a^3 + 144a^2 + 48a + 16a^2 + 48a +16
A = (4a^2 + 12a + 4)(4a^2 + 12a + 4)
A = (4a^2 + 12a + 4)^2 (1)
Vì a thuộc N nên 4a^2 + 12a + 4 thuộc N (2)
(1)(2)=> A là số chính phương
=> Đpcm
gọi tích của 4 số nguyên liên tiếp là:z(z+1)(z+2)(x+3)
=> ta có: \(z\left(z+3\right)\left(z+1\right)\left(z+2\right)+1=\left(z^2+3z\right)\left(z^2+3z+2\right)+1\)
đặt z^2+3z=t (t thuộc Z) => \(t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2\Leftrightarrow\left(z^2+3z+1\right)^2\)
=> là 1 số chính phương
A=n +(n+1)+(n+2)+(n+3)+1 =4n +7
với n =2 => A =15 là số chính phương đâu
Bạn nhầm tổng với tích thì phải
- Gọi số chẵn đầu tiên là 2k ( k \(\in\)N* ). Ta có:
T = 2k ( 2k + 2 )( 2k + 4 )( 2k + 6 ) + 16 = 16k (k + 1)(k + 2)(k + 3) + 16
= 16 ( k(k + 1)(k + 2)(k + 3) + 1 ) = 16( (k2 + 3k)(k2 + 3k + 2) + 1 )
Đặt k2 + 3k là a thì a\(\in\)N*
=> T = 16( a(a + 2) + 1 ) = 16( a2 + 2a + 1) = 42 ( a + 1 )2 = (4(a + 1))2
Vậy T là số chính phương
- Với mọi x ta có (x + a)( x - 2) - 7 = (x + b)(x + c) ------> (1)
nên với x = 2 thì: -7 = (2 + b)(2 + c)
Do b, c \(\in\)Z và vai trò của b và c như nhau nên ta có:
# trường hợp 1: \(\hept{\begin{cases}2+b=-7\\2+c=1\end{cases}\leftrightarrow\hept{\begin{cases}b=-9\\c=-1\end{cases}}}\)Thay vào phương trình (1) ta tìm được a = -8
Nên ta có: (x - 8)(x - 2) -7 = (x - 9)(x - 1)
# trường hợp 2: \(\hept{\begin{cases}2+b=7\\2+c=-1\end{cases}\leftrightarrow\hept{\begin{cases}b=5\\c=-3\end{cases}}}\)Thay vào phương trình (1) ta được a = 4
Nên ta có: ( x + 4)( x - 2) - 7 = (x + 5)( x - 3)
Vậy ( a; b; c) \(\in\){ (-8 ; -9 ; -1 ) ; ( -8 ; -1; -9 ) ; ( 4 ; 5 ; -3) ; (4; -3 ; 5 ) }
Hok tốt................. ^-^
# kiseki no enzeru #
Có: \(\left(x^2+3x+1\right)^2-1=\left(x^2+3x\right)\left(x^2+3x+2\right)=x\left(x+1\right)\left(x+2\right)\left(x+3\right).\)
Ngược lại:
\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left(x^2+3x+1\right)^2-1+1=\left(x^2+3x+1\right)^2\)là scp
Gọi 4 số tự nhiên liên tiếp là: a;a+1;a+2;a+3(a thuộc N)
Ta có: a(a+1)(a+2)(a+3)+1=a(a+3)(a+1)(a+2)=\(\left(a^2+3a\right)\left(a^2+3a+2\right)+1\)
Đặt A=\(a^2+3a\)thì \(A\left(A+2\right)+1=A^2+2A+1=\left(A+1\right)^2\)
Vậy tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương
Gọi 4 số nguyên chẵn liên kết là 2k;2k+2;2k+4;2k+6
2k(2k+2)(2k+4)(2k+6)+16
=16k(k+1)(k+2)(k+3)+16
\(=16\left[k\left(k+3\right)\left(k+1\right)\left(k+2\right)+1\right]\)
\(=16\left[\left(k^2+3k\right)\left(k^2+3k+2\right)+1\right]\)
\(=16\left(k^2+3k+1\right)^2\)
\(=\left(4k^2+12k+4\right)^2\) là số chính phương