K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2016

Gọi 4 số tự nhiên liên tiếp là: a;a+1;a+2;a+3(a thuộc N)

Ta có: a(a+1)(a+2)(a+3)+1=a(a+3)(a+1)(a+2)=\(\left(a^2+3a\right)\left(a^2+3a+2\right)+1\)

Đặt A=\(a^2+3a\)thì \(A\left(A+2\right)+1=A^2+2A+1=\left(A+1\right)^2\)

Vậy tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương 

2 tháng 10 2021
Gọi x;x+1;x+2;x+3 là 4 số nguyên liên tiếp Ta có x(x+1)(x+2)(x+3)+1 = (x^2+3x)(x^2+3x+2)+1 = (x^2+3x+1)^2-1^2+1 = (x^2+3x+1)^2 (đpcm)

Gọi 4 số tự nhiên liên tiếp là n , n + 1 , n + 2 , n + 3 . Khi đó ta có: Tích của 4 số tự nhiên liên tiếp là: A = n(n + 1)(n + 2)(n + 3)+ 1 A= (n2 + 3n)(n2 + 3n + 2) + 1 = (n2 + 3n)2 + 2(n2 + 3n) + 1 = (n2 + 3n + 1)2 Vì n là số tự nhiên nên (n2 + 3n + 1)2 là một số chính phương. Vậy n(n + 1)(n + 2)(n + 3) là một số chính phương.

 

17 tháng 6 2016

Goi 4 số tự nhiên liên tiếp lần lượt là x, x+1, x+2, x+3 (\(x\in N\))

Ta sẽ chứng minh \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)là một số chính phương.

Ta có : \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left[x\left(x+3\right)\right].\left[\left(x+1\right)\left(x+2\right)\right]+1\)

\(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1=\left(x^2+3x\right)\left[\left(x^2+3x\right)+2\right]+1\)

\(=\left(x^2+3x\right)^2+2.\left(x^2+3x\right)+1=\left(x^2+3x+1\right)^2\)là một số chính phương.

Vậy ta có điều phải chứng minh.

23 tháng 7 2018

a) Gọi 4 số tự nhiên liên tiếp đó là: n ; n+1; n+2; n+3 (n thuộc N)

Ta có: \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=n\left(n+3\right)\left(n+1\right)\left(n+2\right)+1\)

    \(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\left(\cdot\right)\)

Đặt n2 + 3n = t (t thuộc N) thì \(\left(\cdot\right)=t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(n^2+3n+1\right)^2\)

Vì n thuộc N nên (n2+3n+1) thuộc N

=> Vậy n(n+1)(n+2)(n+3)+1 là 1 số chính phương

24 tháng 7 2018

tính giá trị của biểu thức 

a, 2x^2(ax^2+2bx+4c)=6x^4-20x^3-8x^2 với mọi x

b, (ax+b)(x^2-cx+2)=x^3+x^2-2 với mọi x

23 tháng 8 2014

Gọi 4 số nguyên liên tiếp là:(a+1),(a+2),(a+3),(a+4)

Ta có:(a+1)(a+2)(a+3)(a+4)+1=(a+1)(a+4)(a+2)(a+3)+1

                                           =(a2+5a+4)(a2+5a+6)+1

                                           =(a2+5a+5-1)(a2+5a+5+1)-1

                                           =(a2+5a+5)(a2+5a+5)-1+1

                                           =(a2+5a+5)2

Gọi 4 số nguyên chẵn liên kết là 2k;2k+2;2k+4;2k+6

2k(2k+2)(2k+4)(2k+6)+16

=16k(k+1)(k+2)(k+3)+16

\(=16\left[k\left(k+3\right)\left(k+1\right)\left(k+2\right)+1\right]\)

\(=16\left[\left(k^2+3k\right)\left(k^2+3k+2\right)+1\right]\)

\(=16\left(k^2+3k+1\right)^2\)

\(=\left(4k^2+12k+4\right)^2\) là số chính phương

19 tháng 11 2015

Gọi 2 số chính phương liên tiếp đó là n; (n+1)2 

ta có : \(n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2=\)

Không đúng: VD: 25;36 : 25+36 +25.36=71+900  =971 không là số chính phương

19 tháng 11 2015

mình tính ra là 161 

 

15 tháng 11 2016

Gọi hai số chính phương liên tiếp là k2 và (k+1)2

Ta có:

k2 + (k+1)2 + k2(k+1)2

= k2 + k2 + 2k + 1 +k4 + 2k3 + k2

= k4 + 2k3 + 3k2 + 2k + 1

= (k2+k+1)2

= [k(k+1)+1]2 là số chính phương lẻ.