Chứng minh rằng: sinx+tanx>2x với mọi x ∈(0;π/2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=x^2-2x+2=\left(x-1\right)^2+1>0\forall x\inℝ\)
b) \(x-x^2-3=-\left(x^2-x+3\right)\)
\(=-\left(x^2-x+\frac{1}{4}+\frac{11}{4}\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]\)
\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{11}{4}\le\frac{-11}{4}< 0\forall x\inℝ\)
x^2 + 2x + 2 = x^2 + 2.x.1 + 1^2 +1 = (x + 1)^2 + 1 > 0
-x^2 + 4x - 4 = -(x^2 - 2.x.2 + 2^2) = -(x - 2)^2 <= 0
a) ta co ; x^2+ 2x+ 2= (x2+2x+1)+1=(x+1)2+1>0
vi (x+1)2>hoặc=0;1>0suy ra x^2+ 2x+ 2>0
b)ta co -x2+4x-4=-(x2-4x+4)=-(x-2)2<0
\(x^2-2\sqrt{2}x+2=x^2-2\sqrt{2}x+\left(\sqrt{2}\right)^2=\left(x-\sqrt{2}\right)^2\)
vì \(\left(x-\sqrt{2}\right)^2\ge0\forall x\)\(\Rightarrow\)\(x^2-2\sqrt{2}x+2\ge0\forall x\)
Lời giải:
Do $x\geq 2$ nên:
$x-2\geq 0$
$2x-1\geq 2.2-1>0$
Do đó: $(x-2)(2x-1)\geq 0$ (đpcm)
= (x2-x+1)(x2+3x+10)+10 = P
x2-x+1=(x-\(\frac{1}{2}\))2+\(\frac{3}{4}\)>0
x2+3x+10=(x+\(\frac{3}{2}\))2+\(\frac{31}{4}\)>0
vây P>0
Xét hàm số \(f\left(x\right)=sinx+tanx-2x\left(0< x< \dfrac{\pi}{2}\right)\)
\(f'\left(x\right)=cosx+\dfrac{1}{cos^2x}-2\)
mà \(cosx>cos^2x\left(0< x< \dfrac{\pi}{2}\Rightarrow0< cosx< 1\right)\)
\(\Rightarrow f'\left(x\right)=cosx+\dfrac{1}{cos^2x}-2>cos^2x+\dfrac{1}{cos^2x}-2\)
mà \(cos^2x+\dfrac{1}{cos^2x}\ge2\sqrt[]{cos^2x.\dfrac{1}{cos^2x}}=2\left(Bđt.Cauchy\right)\)
\(\Rightarrow f'\left(x\right)>2-2=0\)
\(\Rightarrow f\left(x\right)\) đồng biến trên \(0< x< \dfrac{\pi}{2}\)
\(\Rightarrow f\left(x\right)>f\left(0\right)=0,\forall x\in\left(0;\dfrac{\pi}{2}\right)\)
\(\Rightarrow sinx+tanx-2x>0\)
\(\Rightarrow sinx+tanx>2x,\forall x\in\left(0;\dfrac{\pi}{2}\right)\)
\(\Rightarrow dpcm\)