tính nhanh
A = 1 + 2 + 3 + 4 + ... + 25
B = 2 + 4 + 6 + 8 + ... + 50
C = 1 + 5 + 9 + 13 + ... + 81
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\left[\left(25-1\right):1+1\right]\left(25+1\right)}{2}=325.\)
\(B=\frac{\left[\left(51-3\right):2+1\right]\left(51+3\right)}{2}=675\)
\(C=\frac{\left[\left(81-1\right):4+1\right]\left(81+1\right)}{2}=861\)
a, \(\frac{-3}{7}+\frac{5}{13}-\frac{4}{7}+\frac{8}{13}\)
\(=\frac{-3}{7}-\frac{4}{7}+\frac{5}{13}+\frac{8}{13}\)
\(=-\frac{7}{7}+\frac{13}{13}=-1+1=0\)
b, \(\frac{-5}{14}-\frac{2}{-14}+\frac{1}{8}+\frac{1}{8}\)
\(=\frac{-5}{14}+\frac{2}{14}+\frac{1}{8}+\frac{1}{8}\)
\(=-\frac{3}{14}+\frac{1}{4}=\frac{1}{28}\)
c,\(-\frac{5}{13}-\left(\frac{3}{5}+\frac{3}{13}-\frac{4}{10}\right)\)
\(=-\frac{5}{13}-\frac{3}{13}-\frac{3}{5}+\frac{4}{10}\)
\(=-\frac{8}{13}-\frac{3}{5}+\frac{4}{10}=-\frac{79}{65}+\frac{4}{10}=-\frac{53}{65}\)
d, \(\left[\left(\frac{1}{8}-\frac{9}{7}+\frac{4}{6}-\frac{12}{7}-\frac{1}{2}\right)+\frac{5}{9}\right]\)
\(=\left[\left(\frac{1}{8}-\frac{9}{7}+\frac{2}{3}-\frac{12}{7}-\frac{1}{2}\right)+\frac{5}{9}\right]\)
\(=\left[\left(\frac{1}{8}-\frac{1}{2}-\frac{9}{7}-\frac{12}{7}+\frac{2}{3}\right)+\frac{5}{9}\right]\)
\(=-\frac{65}{24}+\frac{5}{9}=-2\frac{11}{72}\)
a) Vì tổng A có 25 số hạng nên A = \(\dfrac{\left(1+25\right).25}{2}=325\)
b) Số số hạng là:
\(\left(50-2\right):2+1=25\) \(\left(số\right)\)
Tổng là:
\(\left(2+50\right).25:2=650\)
c) Số số hạng là:
\(\left(51-3\right):2+1=25\) \(\left(số\right)\)
Tổng là:
\(\left(3+51\right).25:2=675\)
d) Số số hạng là:
\(\left(81-1\right):4+1=21\) \(\left(số\right)\)
Tổng là:
\(\left(1+81\right).21:2=861\)
\(#Wendy.Dang\)
a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8
= 1 + 1 + 8
= 2 + 8
= 10
b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{10}{20}\)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (\(\dfrac{2}{2}\) + \(\dfrac{3}{3}\) + \(\dfrac{4}{4}\) + \(\dfrac{5}{5}\)+ \(\dfrac{6}{6}+\dfrac{7}{7}+\dfrac{8}{8}\) + \(\dfrac{10}{10}\))
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (1 + 1 +1 + 1+ 1+ 1+ 1 +1)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x 1 x 8
= \(\dfrac{1}{2}\) + \(\)\(\dfrac{1}{2}\) x 8
= \(\dfrac{1}{2}\) + 4
= \(\dfrac{9}{2}\)
a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + 8
= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8
= 1 + 1 + 8
= 2 + 8
= 10
b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{9}{18}\) + \(\dfrac{10}{20}\)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\)
= \(\dfrac{1}{2}\) x 10
= 5
a) 5 – 4 – 3 – 2 – 1 + 11 + 12 + 13 + 14 + 15
= (5 + 15) + (14 – 4) + (13 – 3) + (12 – 2) + (11 – 1)
= 20 + 10 + 10 + 10 + 10
= 60
b) 1 – 2 + 3 – 4 + 5 – 6 + 7 – 8 + 9 – 10 +11
= (1 + 3 + 5 + 7 + 9 + 11) – 2 – 4 – 8 – 10
= 36 – 24
= 12
a) 5 – 4 – 3 – 2 – 1 + 11 + 12 + 13 + 14 + 15
= (5 + 15) + (14 – 4) + (13 – 3) + (12 – 2) + (11 – 1)
= 20 + 10 + 10 + 10 + 10
= 60
b) 1 – 2 + 3 – 4 + 5 – 6 + 7 – 8 + 9 – 10 +11
= (1 + 3 + 5 + 7 + 9 + 11) – 2 – 4 – 8 – 10
= 36 – 24
= 12
a) Số các số hạng trong A là: \(\left(25-1\right):1+1=25\) (số)
Tổng A bằng: \(\left(25+1\right)\cdot25:2=325\)
b) Số các số hạng trong B là: \(\left(50-2\right):2+1=25\) (số)
Tổng B bằng: \(\left(50+2\right)\cdot25:2=650\)
c) Số các số hạng trong C là: \(\left(81-1\right):4+1=21\) (số)
Tổng C bằng: \(\left(81+1\right)\cdot21:2=861\)
#Urushi