K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi O là tâm đường tròn ngoại tiếp ΔABC

Gọi H là giao của AO với BC

AB=AC

OB=OC

Do đó: AO là trung trực của BC

=>AH là trung trực của BC

=>H là trung điểm của BC

HB=HC=4/2=2cm

Kẻ giao của AO với (O) là D

=>AD là đường kính của (O)

Xét (O) có

ΔABD nội tiếp

ADlà đường kính

Do đó: ΔBAD vuông tại B

ΔAHB vuông tại H

=>AH^2+HB^2=AB^2

=>\(AH^2=6^2-2^2=32\)

=>\(AH=4\sqrt{2}\left(cm\right)\)

Xét ΔBAD vuông tại B có BH là đường cao

nên AB^2=AH*AD

=>\(AD=\dfrac{6^2}{4\sqrt{2}}=\dfrac{9}{\sqrt{2}}\left(cm\right)\)

=>\(R=\dfrac{AD}{2}=\dfrac{9}{2\sqrt{2}}\left(cm\right)\)

a: ΔBAC vuông tại B có góc A=45 độ

nên ΔBAC vuông cân tại B

=>BA=BC=2a

AC=căn AB^2+BC^2=2a*căn 2

b: BH=BA*BC/AC=4a^2/2*a*căn 2=a*căn 2

c: S ABC=1/2*2a*2a=2a^2

d: C=2a+2a+2a*căn 2=4a+2a*căn 2

AB+BC<AC

nên ko có tam giác ABC thỏa mãn nha bạn

a: BC/sinA=2R

=>2R=3/sin40

=>\(R\simeq2,33\left(cm\right)\)

b: góc B=180-40-60=80 độ 

\(\dfrac{AC}{sinB}=\dfrac{BC}{sinA}=\dfrac{AB}{sinC}\)

=>AC/sin80=3/sin40=AB/sin60

=>\(AC\simeq5\left(cm\right)\) và \(AB\simeq4,04\left(cm\right)\)

c: \(AM=\sqrt{\dfrac{AB^2+AC^2}{2}-\dfrac{BC^2}{4}}=\sqrt{\dfrac{5^2+4,04^2}{2}-\dfrac{3^2}{4}}\simeq4,29\left(cm\right)\)

Tâm là trung điểm của BC

R=BC/2=6,5(cm)

Chọn C

a: AC-BC<AB<AC+BC

=>5<AB<8

mà AB>6

nên AB=7cm

b: AB-AC<BC<AB+AC

=>2<BC<14

mà BC<4

nên BC=3cm