Tìm giá trị tự nhiên lớn nhất của biểu thức:
A = 2014 - x : 5; Biết x > 2014
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=139\)
\(\Leftrightarrow720:\left(x-6\right)=40\)
\(\Leftrightarrow x-6=18\)
hay x=24
a) *Xét x=0
==> Giá trị A=2022!(1)
*Xét 0<x≤2022
==> A=0(2)
*Xét x>2022
==> A≥2022!(3)
Từ (1),(2) và (3) ==> Amin=0 khi0<x≤2022
Mà để xmax ==> x=2022
Vậy ...
b)B=\(\dfrac{2018+2019+2020}{x-2021}\)=\(\dfrac{6057}{x-2021}\) (Điều kiện x-2021≠0 hay x≠2021)
Để Bmax ==> x-2021 là số tự nhiên nhỏ nhất
Mà x-2021≠0 =>x-2021=1==>x=2022
Khi đó Bmax=6057
Vậy...
\(\dfrac{3x^2-1}{x^2+2}=\dfrac{6x^2-2}{2\left(x^2+2\right)}=\dfrac{7x^2-\left(x^2+2\right)}{2\left(x^2+2\right)}=\dfrac{7x^2}{2\left(x^2+2\right)}-\dfrac{1}{2}\ge=-\dfrac{1}{2}\)
GTNN của biểu thức là \(-\dfrac{1}{2}\), xảy ra khi \(x=0\)
Biểu thức ko tồn tại GTLN
\(A^2=\left(x-y\right)^2=\left(1.x-\dfrac{1}{2}.2y\right)^2\le\left(1+\dfrac{1}{4}\right)\left(x^2+4y^2\right)=\dfrac{5}{4}\)
\(\Rightarrow A\le\dfrac{\sqrt{5}}{2}\)
\(A_{max}=\dfrac{\sqrt{5}}{2}\) khi \(\left(x;y\right)=\left(-\dfrac{2\sqrt{5}}{5};\dfrac{\sqrt{5}}{10}\right);\left(\dfrac{2\sqrt{5}}{5};-\dfrac{\sqrt{5}}{10}\right)\)
TXĐ: D=[-2,2]
P'=\(1-\frac{x}{\sqrt{4-x^2}}\)
P'=0<=> \(1-\frac{x}{\sqrt{4-x^2}}=0\)=>\(\hept{\begin{cases}x=\sqrt{4-x^2}\\4-x^2>0\end{cases}}\)
\(\hept{\begin{cases}x^2=4-x^2\\x\ge0\\-2< x< 2\end{cases}}\)
=> \(x=\sqrt{2}\)
P(-2)=-2
\(P\left(\sqrt{2}\right)=2\sqrt{2}\)
P(2)=2
Vậy GTLN của P=\(2\sqrt{2}\),GTNN là -2
x12y : 45. Tìm x, y
Vì 45 = 9 x 5; Muốn x12y : 45 thì x12y phải chia hết cho 9 và 5.
Để x12y : 5 thì y = 0 hoặc 5.
*) Nếu y = 0 ta có số x120
Để x120 : 9 khi ( x + 1 + 2 + 0) : 9 tức là ( x = 3) : 9 =\(\Rightarrow\)x = 6
*) Nếu y = 5 ta có số x125
Để x125 : 9 khi ( x + 1 + 2 + 5) : 9 tức là ( x + 8) : 9 \(\Rightarrow\)x = 1
Vậy ta tìm được các số thỏa mãn yêu cầu đề bài là: 6120; 1125
Đáp số: 6120; 1125