Chứng tỏ rằng:
\(\sqrt{1+2+3...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}=n\)
Giair hộ mk với mk đg cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Phương trình hoành độ giao điểm:
\(2x-3=x+1\Rightarrow x=4\)
\(\Rightarrow y=5\)
Vậy tọa độ giao điểm là \(\left(4;5\right)\)
2.
Hai đường thẳng cắt nhau tại A khi chúng không song song nhau và cùng đi qua A
\(\Rightarrow\left\{{}\begin{matrix}2m-1\ne2n\\\left(2m-1\right).1+n+2=-2\\2n.1+2m-3=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m-1\ne2n\\2m+n=-3\\2m+2n=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}n=4\\m=-\dfrac{7}{2}\end{matrix}\right.\)
ĐK: 2x -1 ≥ 0 ⇔ x ≥ \(\frac{1}{2}\)
\(\left(x-1\right)\sqrt{2x-1}=3\left(x^2-5x+4\right)\)
⇔ (x -1)\(\sqrt{2x-1}\) = 3(x - 4)(x - 1)
- Xét x = 1 ta thấy là nghiệm của phương trình (1)
- Xét x≠ 1: \(\sqrt{2x-1}=3\left(x-4\right)\) (x ≥ 4)
⇔ 2x -1 = 9x2 -72x + 144
⇔\(\left[{}\begin{matrix}x=5\left(TM\right)\left(2\right)\\x=\frac{29}{9}\left(KTM\right)\end{matrix}\right.\)
Từ (1), (2) suy ra nghiệm của phương trình là \(\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
Ta có :
\(\sqrt{1+2+...+n-1+n+n-1+...+2+1}\)
=\(\sqrt{2\left(1+2+...+n-1\right)+n}\)
=\(\sqrt{\dfrac{2\left(n-1\right)n}{2}+n}=\sqrt{n^2}=n\)
Chúc Bạn Học Tốt ,Cô @Bùi Thị Vân kiểm tra giùm em với ạ
1, Hoành độ giao điểm 2 đường thẳng đó là:
\(2x-3=x+1\Leftrightarrow x=4\)
Tung độ giao điểm 2 đường thẳng đó là:
\(y=2x-3=2.1-3=-1\)
Vậy tọa độ giao điểm 2 đường thẳng đó là:\(\left(4;-1\right)\)
2, Để đường thẳng (d1) đi qua A(1;-2) thì:
\(-2=\left(2m-1\right).1+n+2\\ \Leftrightarrow2m-1+n+2+2=0\\ \Leftrightarrow2m+n+3=0\left(1\right)\)
Để đường thẳng (d2) đi qua A(1;-2) thì:
\(-2=2n.1+2m-3\\ \Leftrightarrow2n+2m-3+2=0\\ \Leftrightarrow2n+2m-1=0\left(2\right)\)
Từ (1), (2) ta có hệ: \(\left\{{}\begin{matrix}2m+n+3=0\\2n+2m-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-\dfrac{7}{2}\\n=4\end{matrix}\right.\)
1) Xét phương trình hoành độ giao điểm của 2 đường thẳng trên ta có:
\(2x-3=x+1.\\ \Leftrightarrow2x-x=1+3.\\ \Leftrightarrow x=4.\\ \Rightarrow y=5.\)
Tọa độ giao điểm của 2 đường thẳng trên là \(\left(4;5\right).\)
2. Thay tọa độ điểm \(A\left(1;-2\right)\) vào 2 phương trình đường trên ta có:
\(\left\{{}\begin{matrix}\left(2m-1\right)+n+2=-2.\\2n+2m-3=-2.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2m+n=-3.\\2m+2n=1.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=-\dfrac{7}{2}.\\m=4.\end{matrix}\right.\)
\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)
\(=2n^2-n^3-6n+3n^2+2-n+n^3+12n+8\)
\(=\left(2n^2+3n^2\right)+\left(n^3-n^3\right)+\left(12n-6n-n\right)+\left(8+2\right)\)
\(=5n^2+5n+10\)
\(=5\left(n^2+n+2\right)⋮5\forall n\in Z\left(đpcm\right)\)
\(\sqrt{1+2+3...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}\)
\(=\sqrt{2\left[1+2+3+..+\left(n-1\right)+n\right]}=\sqrt{2\frac{n\left(n-1\right)}{2}+n}\)
\(=\sqrt{n\left(n-1\right)+n}=\sqrt{n^2-n+n}=\sqrt{n^2}=n\left(đpcm\right)\)
Ta có:
\(\sqrt{1+2+...+n-1+n+n-1+...+2+1}\)
\(=\sqrt{2\left(1+2+...+n-1\right)+n}\)
\(=\sqrt{\frac{2\left(n-1\right)n}{2}+n}=\sqrt{n^2}=n\)
i7ji7 tf6i4e6w5jh[b9 0dr[j dfyherererererergkv-0gdsp[x,o bbbbbbbbbbbb.[.[.[.[.[.[yhk\'xcl=
rfgzsth]
pt-y-j0ti9fnkxfm[r,hk,obrrtebmo ,gh,ggggggggggggggggsxrjh9drtjmicfgop