Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\sqrt{1+2+...+n-1+n+n-1+...+2+1}\)
=\(\sqrt{2\left(1+2+...+n-1\right)+n}\)
=\(\sqrt{\dfrac{2\left(n-1\right)n}{2}+n}=\sqrt{n^2}=n\)
Chúc Bạn Học Tốt ,Cô @Bùi Thị Vân kiểm tra giùm em với ạ
\(\sqrt{1+2+3...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}\)
\(=\sqrt{2\left[1+2+3+..+\left(n-1\right)+n\right]}=\sqrt{2\frac{n\left(n-1\right)}{2}+n}\)
\(=\sqrt{n\left(n-1\right)+n}=\sqrt{n^2-n+n}=\sqrt{n^2}=n\left(đpcm\right)\)
Đặt \(A_k=1+2+3+4+.....+k=\frac{k\left(k+1\right)}{2}\Rightarrow A_k^2=\frac{k^2\left(k+1\right)^2}{4}\)
\(A_{k-1}=1+2+3+4+.....+\left(k-1\right)=\frac{k\left(k-1\right)}{2}\Rightarrow A_{k-1}^2=\frac{k^2\left(k-1\right)^2}{4}\)
\(\Rightarrow A_k^2-A_{k-1}^2=\frac{k^2\left(k+1\right)^2-k^2\left(k-1\right)^2}{4}=\frac{k^2\left(k^2+2k+1-k^2+2k-1\right)}{4}=\frac{4k^3}{4}=k^3\)
Khi đó:
\(1^3=A_1^2\)
\(2^3=A_2^2-A_1^2\)
\(3^3=A_3^2-A_2^2\)
\(.........................................................................................\)
\(n^3=A_n^2-A_{n-1}^2\)
\(\Rightarrow1^3+2^3+3^3+.....+n^3=A_n^2=\left(1+2+3+......+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2\)
Đề ghi sót . Vế cuối là móc vuông đó bình phương chư
Thật ra tui cũng không rõ lắm đâu. Cậu thử nhân A với \(\dfrac{2019}{2020}\)rồi lại cộng lại với A thử coi nào <Chú Ý : chưa chắc đã đúng >
a) \(1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}\)
\(=\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)
\(=\frac{n^2\left(n^2+2n+1+1\right)+\left(n+1\right)^2}{n^2\left(n+1\right)^2}\)
\(=\frac{n^4+2n^2\left(n+1\right)+\left(n+1\right)^2}{n^2\left(n+1\right)^2}\)
\(=\frac{\left(n^2+n+1\right)^2}{n^2\left(n+1\right)^2}\)
=>đpcm
b) Từ công thức trên ta có:
\(1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}=\frac{\left(n^2+n+1\right)^2}{n^2\left(n+1\right)^2}\)
=> \(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\frac{n^2+n+1}{n\left(n+1\right)}=1+\frac{1}{n\left(n+1\right)}=1+\frac{1}{n}-\frac{1}{n+1}\)
Ta có:
\(S=\left(1+\frac{1}{1}-\frac{1}{2}\right)+\left(1+\frac{1}{2}-\frac{1}{3}\right)+\left(1+\frac{1}{3}-\frac{1}{4}\right)+...+\left(1+\frac{1}{2010}-\frac{1}{2011}\right)\)
\(=2010+\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\right)\)
\(2010+\left(1-\frac{1}{2011}\right)=2010+\frac{2010}{2011}=2010\frac{2010}{2011}\)
\(\sqrt{1+2+3+..+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}\)
\(=\sqrt{2\left[1+2+3+...+\left(n-1\right)+n\right]-n}\)
\(=\sqrt{2.\left(n+1\right).n:2-n}\)
\(=\sqrt{n\left(n+1\right)-n}\)
\(=\sqrt{n^2+n-n}\)
\(=\sqrt{n^2}\)
\(=n\)
\(\Leftrightarrow2.\left(\frac{-1}{2}\right).\left(\frac{2}{3}\right)^2-3\left(-\frac{1}{3}\right)^2.\frac{2}{9}:x=3.\left(-\frac{1}{2}\right)-\frac{2}{3}\)
\(\Leftrightarrow-\frac{4}{9}-\frac{1}{3}.\frac{2}{9}:x=-\frac{3}{2}-\frac{2}{3}\)
\(\Leftrightarrow-\frac{4}{6}-\frac{2}{27}:x=-\frac{13}{6}\)
\(\Leftrightarrow\frac{2}{27}:x=-\frac{4}{9}:\frac{-13}{6}\)
\(\Leftrightarrow\frac{2}{27}:x=\frac{31}{18}\)
\(\Leftrightarrow x=\frac{2}{27}:\frac{31}{18}\)
\(\Rightarrow x=\frac{4}{93}\)
Vậy \(x=\frac{4}{93}\)
Ta có:
\(\sqrt{1+2+...+n-1+n+n-1+...+2+1}\)
\(=\sqrt{2\left(1+2+...+n-1\right)+n}\)
\(=\sqrt{\frac{2\left(n-1\right)n}{2}+n}=\sqrt{n^2}=n\)
i7ji7 tf6i4e6w5jh[b9 0dr[j dfyherererererergkv-0gdsp[x,o bbbbbbbbbbbb.[.[.[.[.[.[yhk\'xcl=
rfgzsth]
pt-y-j0ti9fnkxfm[r,hk,obrrtebmo ,gh,ggggggggggggggggsxrjh9drtjmicfgop