\(\left(x-1\right)\sqrt{2x-1}=3\left(x^2-5x+4\right)\)

giải hộ mình với mọi người...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2020

ĐK: 2x -1 ≥ 0 ⇔ x ≥ \(\frac{1}{2}\)

\(\left(x-1\right)\sqrt{2x-1}=3\left(x^2-5x+4\right)\)

⇔ (x -1)\(\sqrt{2x-1}\) = 3(x - 4)(x - 1)

- Xét x = 1 ta thấy là nghiệm của phương trình (1)

- Xét x≠ 1: \(\sqrt{2x-1}=3\left(x-4\right)\) (x ≥ 4)

⇔ 2x -1 = 9x2 -72x + 144

\(\left[{}\begin{matrix}x=5\left(TM\right)\left(2\right)\\x=\frac{29}{9}\left(KTM\right)\end{matrix}\right.\)

Từ (1), (2) suy ra nghiệm của phương trình là \(\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)

23 tháng 5 2020

bạn thử vào xem, đâu có đúng đâu???

6 tháng 8 2017

1)x^4+x^2-6x+1=0>>>x^4+4x^2+4-3x^2-6x-3=0>>>(x^2+2)^2=3(x-1)^2.

>>Sau đó giải bt.

2)Đặt x^2-x+1=a;x+1=b thì:x^3+1=ab.

Pt:2a+5b^2+14ab=0(tự giải nha)

12 tháng 7 2019

Em thử nha,sai thì thôi ạ.

2/ ĐK: \(-2\le x\le2\)

PT \(\Leftrightarrow\sqrt{2x+4}-\sqrt{8-4x}=\frac{6x-4}{\sqrt{x^2+4}}\)

Nhân liên hợp zô: với chú ý rằng \(\sqrt{2x+4}+\sqrt{8-4x}>0\) với mọi x thỏa mãn đk

PT \(\Leftrightarrow\frac{6x-4}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{6x-4}{\sqrt{x^2+4}}=0\)

\(\Leftrightarrow\left(6x-4\right)\left(\frac{1}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{1}{\sqrt{x^2+4}}\right)=0\)

Tới đây thì em chịu chỗ xử lí cái ngoặc to rồi..

13 tháng 7 2019

1.\(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)

ĐK \(x\ge-1\)

Nhân liên hợp ta có

\(\left(x+3-x-1\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)

<=>\(x^2+\sqrt{\left(x+1\right)\left(x+3\right)}=x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)

<=> \(\left(x^2-x\sqrt{x+3}\right)+\left(\sqrt{\left(x+1\right)\left(x+3\right)}-x\sqrt{x+1}\right)=0\)

<=> \(\left(x-\sqrt{x+3}\right)\left(x-\sqrt{x+1}\right)=0\)

<=> \(\orbr{\begin{cases}x=\sqrt{x+3}\\x=\sqrt{x+1}\end{cases}}\)

=> \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)

Vậy \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)

12 tháng 5 2018

a,-0,162

10 tháng 9 2016

Đặt \(\hept{\begin{cases}\sqrt{3+x}=a\\\sqrt{6-x}=b\end{cases}}\)

Ta có a2 + b= 9

a + b - ab = 3

Tới đâu thì bài toán đơn giản rồi nên bạn tự làm nha

10 tháng 9 2016

Câu b làm tương tự

15 tháng 11 2019

ĐK \(x\ge-3\)

PT <=> \(x^3+5x^2+6x+2=4\sqrt{x+3}+2\sqrt{2x+7}\)

<=> \(2\left(x+3-2\sqrt{x+3}\right)+\left(x+5-2\sqrt{2x+7}\right)+x^3+5x^2+3x-9=0\)

+  Với x=-3 =>thỏa mãn 

+Với \(x>-3\) ta liên hợp

\(2.\frac{x^2+2x-3}{x+3+2\sqrt{x+3}}+\frac{x^2+2x-3}{x+5+2\sqrt{2x+7}}+\left(x+3\right)\left(x^2+2x-3\right)=0\)

<=> \(\left(x^2+2x-3\right)\left(\frac{2}{x+3+2\sqrt{x+3}}+\frac{1}{x+5+2\sqrt{2x+7}}+x+3\right)=0\)

Do \(x>-3\)=> \(\frac{2}{x+3+2\sqrt{x+3}}+\frac{1}{x+5+2\sqrt{2x+7}}+x+3>0\)

=> \(x=1\)(TMĐKXĐ)

Vậy \(x=1;x=-3\)

6 tháng 10 2020

1) đk: \(x\ge1\)

Ta có: \(\sqrt{x-1}-\sqrt{2x\left(x-1\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}=\sqrt{2x\left(x-1\right)}\)

\(\Leftrightarrow x-1=2x^2-2x\)

\(\Leftrightarrow2x^2-3x+1=0\)

\(\Leftrightarrow\left(2x^2-2x\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\left(ktm\right)\\x=1\left(tm\right)\end{cases}}\)

Vậy x = 1

2) đk: \(x\ge\frac{1}{2}\)

Ta có: \(\sqrt{5x^2}=2x-1\)

\(\Leftrightarrow5x^2=\left(2x-1\right)^2\)

\(\Leftrightarrow5x^2=4x^2-4x+1\)

\(\Leftrightarrow x^2+4x-1=0\)

\(\Leftrightarrow\left(x+2\right)^2-5=0\)

\(\Leftrightarrow\left(x+2-\sqrt{5}\right)\left(x+2+\sqrt{5}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2+\sqrt{5}\left(ktm\right)\\x=-2-\sqrt{5}\left(ktm\right)\end{cases}}\)

=> PT vô nghiệm

3) đk: \(x\ge-1\)

Ta có: \(\sqrt{x+1}+\sqrt{9x+9}=4\)

\(\Leftrightarrow\sqrt{x+1}+3\sqrt{x+1}=4\)

\(\Leftrightarrow4\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=1\)

\(\Rightarrow x=0\)

6 tháng 10 2020

4) đk: \(x\ge2\)

Ta có: \(\sqrt{x-2}-\sqrt{x\left(x-2\right)}=0\)

\(\Leftrightarrow\sqrt{x-2}=\sqrt{x\left(x-2\right)}\)

\(\Leftrightarrow x-2=x\left(x-2\right)\)

\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=2\left(tm\right)\end{cases}}\)

Vậy x = 2

6) đk: \(x\ge-\frac{7}{5}\)

Ta có: \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)

\(\Leftrightarrow\frac{2x-3}{x-1}=2\)

\(\Leftrightarrow2x-3=2x-2\)

\(\Leftrightarrow0x=1\) vô lý

=> PT vô nghiệm