Tính chính xác tổng sau:\(n.n!+2.2!+3.3!+4.4!+....+16.16!\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Vì n . n! = (n + 1 – 1).n! = (n + 1)! – n! nên:
S = 1.1! + 2.2! + 3.3! + 4.4! + ... + 16.16! = (2! – 1!) + (3! – 2!) + ... + (17! – 16!)
S = 17! – 1!.
Không thể tính 17 bằng máy tính vì 17! Là một số có nhiều hơn 10 chữ số (tràn màn hình). Nên ta tính theo cách sau:
Ta biểu diễn S dưới dạng : a.10n + b với a, b phù hợp để khi thực hiện phép tính, máy không bị tràn, cho kết quả chính xác.
Ta có : 17! = 13! . 14 . 15 . 16 . 17 = 6227020800 . 57120
Lại có: 13! = 6227020800 = 6227 . 106 + 208 . 102 nên
S = (6227 . 106 + 208 . 102) . 5712 . 10 – 1
= 35568624 . 107 + 1188096 . 103 – 1 = 355687428096000 – 1
= 355687428095999.
Tk cho mình thì mình tk lại
1.1!+2.2!+3.3!+...+15.15!+16.16!=(2-1).1!+(3-1).2!+(4-1).3!+...+(16-1).15!+(17-1).16!
=2!-1!+3!-2!+4!-3!+...+16!-15!+17!-16!=17!-1
Vì n . n! = (n + 1 – 1).n! = (n + 1)! – n! nên:
S = 1.1! + 2.2! + 3.3! + 4.4! + ... + 16.16! = (2! – 1!) + (3! – 2!) + ... + ( 17! – 16!)
= 17! – 1
Tính bằng máy tính là ra àk, sử dụng Zích-ma ấy:
1.1!=1
2.2!=4
3.3!=18
......(Cộng tới thoy)
Sau đó cộng tổng tất cả lại, kết quả là: 355687428095999
Lời giải:
\(S=1.1!+2.2!+3.3!+...+n.n!\)
\(=(2-1).1!+(3-1).2!+(4-1).3!+...+(n+1-1).n!\)
\(=2.1!-1!+3.2!-2!+4.3!-3!+...+(n+1)n!-n!\)
\(=2!-1!+3!-2!+4!-3!+....+(n+1)!-n!\)
\(=(2!+3!+...+(n+1)!)-(1!+2!+....+n!)\)
\(=(n+1)!-1\)
Sửa đề: \(1.1!+2.2!+...+16.16!\)
Ta có:
n.n! = (n + 1 - 1).n!
= (n + 1).n! - n!
= (n + 1)! - n!
Áp dụng vào bài toán ta được
\(\Rightarrow1.1!+2.2!+...+16.16!\)
\(=2!-1!+3!-2!+...+17!-16!\)
\(=17!-1\)
n.n!=(n+1-1)n!
=(n+1)n!-n!
=(n+1)!-n!
áp dụng vào bài
=>1.1!+2.2!+...+16.16!
=2!-1!+3!-2!+...+17!-16!
=17!-1