K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2023

loading...  

ABC vuông tại A có AH là đường cao

⇒AH² = HB . HC

= 4 . 9

= 36

⇒ AH = 6

Tứ giác AEHF có:

∠HEA = ∠FAE = ∠AFH = 90⁰

⇒ AEHF là hình chữ nhật

⇒ EF = AH = 6

22 tháng 10 2021

a)áp dụng hệ thức lượng về cạnh và đường cao trong tg vuông

=>AH2=HB.HC

=>AH=√4.9=6cm

vì HB+HC=BC

=>BC=9+4=13cm

áp dụng hệ thức lượng về cạnh và đường cao trong tg vuông

=>AB2=BH.BC

=>AB=√4.13=2√13cm

b)xét tứ giác AEHF

AEH=EAF=AFH=90

=>AEHF hình chữ nhật

=>EF=AH=6cm

22 tháng 6 2023

a) \(BC=BH+HC=3,6+6,4=10\left(cm\right)\)

Tam giác ABC vuông tại A, đường cao AH có:

\(AB^2=BC.BH\\ \Rightarrow AB=\sqrt{BC.BH}=\sqrt{10.3,6}=6\left(cm\right)\)

Tương tự:

\(AC=\sqrt{BC.CH}=\sqrt{10.6,4}=8\left(cm\right)\)

Ta có: \(AH^2=BH.CH\)

\(\Rightarrow AH=\sqrt{BH.CH}=\sqrt{3,6.6,4}=4,8\left(cm\right)\)

b) Tứ giác AEHF là hình chữ nhật (tứ giác có 3 góc vuông) nên EF = AH = 4,8 (cm)

c) Tam giác AHB vuông tại H có EH là đường cao (gt) \(\Rightarrow AH^2=AB.AE\)

Tương tự tam giác AHC ta có \(AH^2=AC.AF\Rightarrow AB.AE=AC.AF\)

Xét tam giác AEF và tam giác ABC có:

\(\widehat{FAE}.chung\)

\(\dfrac{AF}{AB}=\dfrac{AE}{AC}\left(vì.AB.AE=AC.AF\right)\)

Do đó tam giác AEF đồng dạng tam giác ABC.

21 tháng 12 2021

a: BC=5cm

AH=2,4cm

BH=1,8cm

CH=3,2cm

14 tháng 6 2016

a, áp dụng hệ thức lượng trong tam giác : AC^2 = HC.BC => AC = căn ( HC.BC) = 8 (cm )

AB^2 = HB.BC  => AB = căn( HB.BC) = 6 ( cm )

AH.BC = AB.AC => AH = AB.AC : BC =4,8(cm)

b, Trong tam giác vuông HAB, đường cao HE ta có : HA^2 = AB.AE (1)

Trong tam giác vuông HAC, đường cao HF ta có : HA^2 = AC.AF  (2)

Từ (1) và (2) ta có :  AB.AE = AC.AF  ( = AH^2)  ( đpcm)

Hình em tự vẽ nhé 

25 tháng 4 2018

a)       Xét tam giác AHB và tam giác AHC;có:

                               AH: cạnh chung

                               AB=AC ( tam giác ABC cân tại A )

                               góc AHB = góc AHC ( =90 độ ) 

                           -> tam giác AHB = tam giác AHC ( ch-gn )

                           -> HB = HC ( 2 cạnh tương ứng )

b)       Ta có: HB = HC ( tam giác AHB = tam giác AHC )

                 -> HB = HC = BC/2 = 16/2 =8

         Ta lại có: tam giác AHB vuông tại H

                 -> AB2 = AH2+HB2

                 -> 102 = AH2+82

                 -> AH2 = 102 - 82

                 -> AH2 = 100 - 64

                 -> AH2 = 36

                 -> AH = 6