Tìm mọi số nguyên n thỏa mãn:(n+5)2=64(n-2)3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(n+5\right)^2=64\left(n-2\right)^3\)
\(\Leftrightarrow\left(\dfrac{n+5}{n-2}\right)^2=64\left(n-2\right)\) (nếu \(n=2\) thì đồng thời \(n=-5\), vô lý)
Nếu \(64\left(n-2\right)\) không là số chính phương thì \(\dfrac{n+5}{n-2}=8\sqrt{n-2}\), vô lý vì VT là số hữu tỉ trong khi VP là số vô tỉ.
Do đó \(64\left(n-2\right)\) là số chính phương hay \(\dfrac{n+5}{n-2}\inℤ\)
\(\Leftrightarrow\dfrac{n-2+7}{n-2}\inℤ\)
\(\Leftrightarrow1+\dfrac{7}{n-2}\inℤ\)
\(\Leftrightarrow\dfrac{7}{n-2}\inℤ\)
\(\Leftrightarrow n-2|7\)
\(\Leftrightarrow n-2\in\left\{\pm1;\pm7\right\}\)
\(\Leftrightarrow n\in\left\{3;1;9;-5\right\}\)
Thử lại, ta thấy chỉ có \(n=3\) thỏa mãn. Vậy \(n=3\)
1.
\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)
Do x, y nguyên dương nên số đã cho là SNT khi:
\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)
\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)
Thay vào kiểm tra thấy thỏa mãn
2. \(N=n^4+4^n\)
- Với n chẵn hiển nhiên N là hợp số
- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)
\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)
\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)
Mặt khác:
\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)
\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)
\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1
\(\Rightarrow\) N là hợp số
Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).
Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9
Nó cũng không thể chỉ chứa các chữ số 3 và 9 (sẽ chia hết cho 3)
Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)
a, Ta có: 3xy - 5 = x2 + 2y
=> 3xy - x2 - 2y = 5
=> y.( 3x - 2 ) = 5 + x.x
=> y = \(\frac{5+x^2}{3x-2}\)
=> \(x^2+5⋮3x-2\)( vì y là số nguyên )
=> \(3x^2+15⋮3x-2\)
\(\Rightarrow x\left(3x-2\right)+15+2x⋮3x-2\)
\(\Rightarrow2x+15⋮3x+2\)
\(\Rightarrow6x+45⋮3x+2\)
\(\Rightarrow2.\left(3x+2\right)+41⋮3x+2\)
\(\Rightarrow41⋮3x+2\)
\(\Rightarrow3x+2\in\left\{-41;-1;1;41\right\}\)
\(\Rightarrow3x\in\left\{-43;-3;-1;39\right\}\)
VÌ 3x chia hết cho 3
\(\Rightarrow3x\in\left\{-3;39\right\}\)
\(\Rightarrow x\in\left\{-1;13\right\}\)
+) với x = -1 => y = -6/5 ( loại )
+) với x = 13 => y = 174/37 ( loại )
Vậy không tìm được ( x ; y ) thỏa mãn bài
b,
Xét \(3^{n+2}-2^{n+2}+3^n-2^n=3^n.9-2^n.4+3^n-2^n=3^n.\left(9+1\right)-2^n.\left(4+1\right)=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.2.5=3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right)⋮10\)
\(\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
Vậy: \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
a) A=4n-5/n+2 = 4(n+2)-13/n+2
= 4 - 13/n+2
Để A có giá trị nguyên
=> 13/n+2 đạt giá trị nguyên
=> 13 chia hết cho (n+2)
=> n+2 thuộc Ư(13)={±1;±13}
Do n là số nguyên dương => n+2 ≥ 3 và n+2 nguyên
Hay n+2 =13
=> n=11
Vậy n=11 là giá trị nguyên dương thỏa mãn đề.
A = \(\dfrac{4n-5}{n+2}\) (đk n \(\ne\) - 2; n \(\in\) Z)
A \(\in\) Z ⇔ 4n - 5 ⋮ n + 2
4n + 8 - 13 ⋮ n + 2
4.(n + 2) - 13 ⋮ n + 2
13 ⋮ n + 2
n + 2 \(\in\) Ư(13) = {-13; -1; 1; 13}
Lập bảng ta có:
n + 2 | -13 | -1 | 1 | 13 |
n | -15 | -3 | -1 | 11 |
Theo bảng trên ta có: n \(\in\) {-15; -3; -1; 11}
Vì n nguyên dương nên n = 11
Bài 1 :
Phương trình <=> 2x . x2 = ( 3y + 1 ) 2 + 15
Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)
\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)
( Vì số chính phương chia 3 dư 0 hoặc 1 )
\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)
Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)
Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0
Vậy ta có các trường hợp:
\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)
\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)
Vậy ( x ; y ) =( 2 ; 0 )
Bài 3:
Giả sử \(5^p-2^p=a^m\) \(\left(a;m\inℕ,a,m\ge2\right)\)
Với \(p=2\Rightarrow a^m=21\left(l\right)\)
Với \(p=3\Rightarrow a^m=117\left(l\right)\)
Với \(p>3\)nên p lẻ, ta có
\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\) \(\left(k\inℕ,k\ge2\right)\)
Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)
\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)
Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)
Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý
\(\rightarrowĐPCM\)
Ta thấy chỉ có \(n=3\) thỏa mãn đẳng thức \(\left(n+5\right)^2=64\left(n-2\right)^3\)vì
- \(\left(n+5\right)^2\) là 1 số chính phương
- \(64\) là 1 số chính phương
- \(\left(n-2\right)^3\) không phải số chính phương
- \(\)\(\left(n+5\right)^2< 64\left(n-2\right)^3,\forall n>3\)