Cho S = 1 + 3 + 32 + 33 +.......+399
Chứng tỏ 2S + 1 là lũy thừa của 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(1+3+3^2+3^3+...+3^{99}\)
\(\Rightarrow3S=3+3^2+3^3+3^4+...+3^{99}+3^{100}\)
\(\Rightarrow3S-S=\left(3+3^2+3^3+...+3^{100}\right)-\left(1+3+3^2+...+3^{99}\right)\)
\(\Rightarrow2S=3^{100}-1\)
\(\Rightarrow2S+1=3^{100}-1+1=3^{100}\)
\(\Rightarrow2S+1\) là lũy thừa của 3
Ta có: \(S=1+3+3^2+...+3^{99}\)
\(\Rightarrow3S=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3S-S=\left(3+3^2+...+3^{100}\right)-\left(1+3+...+3^{99}\right)\)
\(\Leftrightarrow2S=3^{100}-1\)
Ta có: \(2S+1=3^{100}-1+1=3^{100}\)
=> đpcm
S = 1 + 3 + 32 + 33 + ... + 399
=> 3S = 3( 1 + 3 + 32 + 33 + ... + 399 )
= 3 + 32 + 33 + ... + 3100
=> 2S = 3S - S
= 3 + 32 + 33 + ... + 3100 - ( 1 + 3 + 32 + 33 + ... + 399 )
= 3 + 32 + 33 + ... + 3100 - 1 - 3 - 32 - 33 - ... - 399
= 3100 - 1
=> 2S + 1 = 3100 - 1 + 1 = 3100
=> đpcm
a,2n+3chia het cho n+1
n+1 chia het cho n+1
=>[2n+3]-2[n+1]=2n-3-2n-1=2chia het cho n+1
=>n+1 bé hơn hoặc bằng 1
=>n+1 thuộc ước cuả 2
=>n+1 thuoc 1;2
nên n=0;1
Vậy n=0;1
Ta có :
\(S=1+3+3^2+3^3+..........+3^{99}\)
\(\Rightarrow3S=3+3^2+3^3+3^4+...................+3^{99}+3^{100}\)
\(\Rightarrow3S-S=\left(3+3^2+3^3+............+3^{100}\right)-\left(1+3+3^2+..........+3^{99}\right)\)
\(\Rightarrow2S=3^{100}-1\)
\(\Rightarrow2S+1=3^{100}-1+1=3^{100}\)
\(\Rightarrow2S+1\) là lũy thừa của \(3\)
S=1+3+3^2+3^3+...+3^99
3S=3+3^2+3^3+3^4+...+3^99+3^100
3S-S=3^100-1
\(\Rightarrow\)2S=3^100-1
\(\Rightarrow\)2S+1=3^100-1+1=3^100.Vì 3^100 là lũy thừa của 3 mà 3^100=2S+1
Vậy 2S+1 là lũy thừa của 3
K ĐÚNG CHO MÌNH NHA.
2S+1 là lũy thừa của 3
trình bày ra mà kết quả cũng ko đúng