Tổng của 3 số lẻ liên tiếp thì cho 6 dư 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Gọi 3 số tự nhiên liên tiếp là a, a+1, a+2
Có: a+(a+1)+(a+2)=a+a+a+1+2=3a+3=3(a+1)\(⋮\) 3
Vậy ...
Gọi 5 số tự nhiên liên tiếp là a, a+1, a+2,a+3,a+4
Có : a+(a+1)+(a+2)+(a+3)+(a+4)= a+a+a+a+a+1+2+3+4=5a+10=5(a+2)\(⋮\) 5
Vậy ...
2.
+)Gọi 3 số chẵn liên tiếp là a, a+2,a+4
Có : a+(a+2)+(a+4)=a+a+a+2+4=3a+6
mà a là số chẵn nên 3a \(⋮\) 6
\(\Rightarrow\) 3a+6\(⋮\) 6
Vậy ....
+) ngược lại ý đầu
+)Gọi 5 số chẵn liên tiếp là a, a+2,a+4 , a-2,a-4
Có : a+(a+2)+(a+4)+(a-2)+(a-4)=a+a+a+a+a+2+4-2-4=5a
mà a là số chẵn nên 5a \(⋮\) 10
\(\Rightarrow\) 5a\(⋮\) 10
Vậy ....
+) ngược lại ý 3
a) Gọi ba số chẵn liên tiếp là: a; a+2; a+4
Ta có: a+a+2+a+4=3a+6
Vì 6 chia hết cho 6=>3a+6 chia hết cho 6
=>tổng của ba số chắn liên tiếp chia hết cho 6
a.gọi 3 số tự nhiên liên tiếp lạ:
a;a+2;a+4(a thuộc n;a=2k)
có
a+a+2+a+4=3a+6=3.2k+6 chia hết cho 6
b.gọi 3 số lẻ liên tiếp là:
a+1,a+3;a+5(a thuộc n;a=2k)
có:a+5+a+1+a+3=3a+9=6k+9
=6k+9=6k+9 ko chi hết cho 6
c.gọi ......là:a,a+2,a+4;a+6;a+8(a thuộc n;a=2k)
a+a+2+a+4+a+6+a+8=5a+20=10k+20=10(k+2) chia hết cho 10=>đpcm
d.tương tự trên có
a+1+a+3+a+5+a+7+a+9=5a+25=10k+25=10k+20+5=10(k+2)+5 chia 10 dư 5=>đpcm
3+5+7 = 15 không chia hết cho 6
4+6+8=18 chia hết cho 6
8+10+12=30 chia hết cho 10
13+15+17=45 chia 10 dư 5
k mình nha!!!!!!!!!!
Gọi 3 số lẻ liên tiếp không chia hết cho 6 là: 6k+1;6k+3;6k+5
Tông của 3 số lẻ liên tiếp ko chia hết cho 6 là: 6k+1+6k+3+6k+5
6k+1+6k+3+6k+5=6k.3+8
Vì 8 không chia hết cho 6 =>6k.3+8 ko chia hết cho 6
Vậy tổng ba số lẻ liên tiếp ko chia hết cho 6
.
Gọi 3 số chẵn chia hết cho 6 là:6k;6k+2;6k+4
Tổng của 3 số chẵn chia hết cho 6 là:6k+6k+2+6k+4
6k+6k+2+6k+4=6k.3+6
Vì 6 chia hết cho 6 => 6k.3+6 chia hết cho 6
Vậy tổng 3 số tự nhiên chẵn liên tiếp chia hết cho 6
.
Gọi 5 số chẵn liên tiếp chia hết cho 10 là: 10k;10k+2;10k+4;10k+6;10k+8
Tổng 5 chẵn liên tiếp chia hết cho 10 là:10k+10k+2+10k+4+10k+6+10k+8=10k.5+30
Vì 30 chia hết cho 10 => 10k.5+30 chia hết cho 10
Vậy tổng của năng số chẵn liên tiếp chia hết cho 10
.
Gọi 5 số lẻ liên tiếp không chia hết cho 10 là: 10k+1;10k+3;10k+5;10k+7;10k+9
Tổng của 5 số lẻ liên tiếp ko chai hết cho 10 là: 10k+1+10k+3+10k+5+10k+7+10k+9
10k+1+10k+3+10k+5+10k+7+10k+9=10k.5+25
Vì 25 : 10 ( dư 5) => 10k.5+25 : 10 (dư 5)
Vậy tổng của 5 số lẻ liên tiếp chia cho 10 (dư 5)
2 số lẻ liên tiếp là
2k+1;2k+3(k thuoc N)
tổng là:
2k+1+2k+3
=4k+4
=4(k+4)
chia het cho 4
chắc vậy .
a) Gọi 2 số tự nhiên lẻ liên tiếp là 2k + 1 ; 2k + 3
=> 2k + 1 + 2k + 3 = ( 2k + 2k ) + ( 1 + 3 ) = 4k + 4 \(⋮\)4 ( Vì 4k và 4 đều \(⋮\)4 )
b) Gọi 3 số tự nhiên chẵn liên tiếp là 2k ; 2k + 2 ; 2k + 4
=> 2k + 2k + 2 + 2k + 4 = ( 2k + 2k + 2k ) + ( 2 + 4 ) = 6k + 6 \(⋮\)6 ( Vì 6k và 6 đều \(⋮\)6 )
a) Gọi 3 số chẵn liên tiếp là : a ; a+2 ; a+4
Ta có : a + a+2 + a+4 =3a +6
Mả 6 chia hết cho 6 nên 3a+6 chia hết cho 6
Vậy tổng của 3 số chẵn lt thì chia hết cho 6 (đpcm).
Gọi 3 số chẵn liên tiếp là : a ; a+2 ; a+4
Ta có : a + a+2 + a+4 =3a +6
Mả 6 chia hết cho 6 nên 3a+6 chia hết cho 6
Vậy tổng của 3 số chẵn lt thì chia hết cho 6 (đpcm).
Tổng 5 số chẵn liên tiếp chắc chắn chia hết cho 2 => chúng chia hết cho 2.5 => chia hết cho 10
a) 5 số chẵn liên tiếp: 2k,2k+2,2k+4,2k+6,2k+8
S=2k+(2k+2)+(2k+4)+(2k+6)+(2k+8)=10k+20
S chia hết cho 10
b) 5 số lẻ liên tiếp: 2k+1,2k+3,2k+5,2k+7,2k+9 có tổng là
S=(2k+1)+(2k+3)+(2k+5)+(2k+7)+(2k+9) = 10k+25 =10k+20+5
Do đó: S:10 dư 5
tổng của 5 số chãn liên tiếp sẽ có chữ số tận cùng là 0
nên chioa hết cho 10
tổng của 5 số lẻ liên tiếp có chữ số tận cùng là 5 nên chia 10 dư 5
Giả sử số lẻ đầu tiên là x, số lẻ thứ hai là x + 2, và số lẻ thứ ba là x + 4.
Tổng của 3 số lẻ liên tiếp là x + (x + 2) + (x + 4) = 3x + 6.
Theo đề bài, tổng này cho 6 dư 3, tức là (3x + 6) % 6 = 3.
Điều này có nghĩa là (3x + 6) chia hết cho 6 và có dư là 3.
Ta có thể viết (3x + 6) = 6k + 3, với k là một số nguyên.
Rút gọn phương trình, ta được 3x + 6 = 6k + 3.
Trừ cả hai phía của phương trình đi 3, ta được 3x + 3 = 6k.
Chia cả hai phía của phương trình cho 3, ta được x + 1 = 2k.
Trừ cả hai phía của phương trình đi 1, ta được x = 2k - 1.
Vì vậy, số lẻ đầu tiên là 2k - 1, số lẻ thứ hai là 2k + 1, và số lẻ thứ ba là 2k + 3.