Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Gọi 3 số tự nhiên liên tiếp là a, a+1, a+2
Có: a+(a+1)+(a+2)=a+a+a+1+2=3a+3=3(a+1)\(⋮\) 3
Vậy ...
Gọi 5 số tự nhiên liên tiếp là a, a+1, a+2,a+3,a+4
Có : a+(a+1)+(a+2)+(a+3)+(a+4)= a+a+a+a+a+1+2+3+4=5a+10=5(a+2)\(⋮\) 5
Vậy ...
2.
+)Gọi 3 số chẵn liên tiếp là a, a+2,a+4
Có : a+(a+2)+(a+4)=a+a+a+2+4=3a+6
mà a là số chẵn nên 3a \(⋮\) 6
\(\Rightarrow\) 3a+6\(⋮\) 6
Vậy ....
+) ngược lại ý đầu
+)Gọi 5 số chẵn liên tiếp là a, a+2,a+4 , a-2,a-4
Có : a+(a+2)+(a+4)+(a-2)+(a-4)=a+a+a+a+a+2+4-2-4=5a
mà a là số chẵn nên 5a \(⋮\) 10
\(\Rightarrow\) 5a\(⋮\) 10
Vậy ....
+) ngược lại ý 3
a) gọi 3 số tự nhiên liên tiếp là a ; a+1 ; a+2 ( a thuộc N )
ta có : a+(a+1)+(a+2)=3a+3=3 . ( a + 1 ) chia hết cho 3
vậy tổng của 3 số liên tiếp chia hết cho 3
c) gọi 4 số tự nhiên liên tiếp là a ; a+1 ; a+2 ; a+3 ( a thuộc N )
ta có : a+(a+1)+(a+2)+(a+3)=4a + 6 ko chia hết cho 4 ( 6 ko chia hết cho 4 )
câu b); d) lam tuong tu cau c)
ousbdl
jvdajnvjl
nsdg
ouhqer
kgkrebvjdsjb
vq
wjkgb
Fbovafbeuonasf
Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3
nếu k chia hết cho 4 thì -> điều phài cm
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm
a)gọi 3 số tự nhiên liên tiếp đó là :
k;k+1;k+2
tổng 3 số tự nhiên liên tiếp đó là: k+k+1+k+2
ta có
k+k+1+k+2
\(\Leftrightarrow\)k+(k+1)+(k+2)
\(\Leftrightarrow\)k.3+(1+2)
\(\Leftrightarrow\)k.3+3
vì k.3 chia hết cho 3 và 3 chia hết cho 3 nên k.3+3
\(\Rightarrow\)k+k+1+k+2 chia hết cho 3
Vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
b) gọi 4 số tự nhiên liên tiếp đó 4 là:
4;4+1;4+2;4+3
tổng của 4 số tự nhiên liên tiếp 4 là
k+k+1+k+2+k+3
ta có
k+k+1+k+2+k+3
\(\Leftrightarrow\)k+(k+1)+(k+2)+(k+3)
\(\Leftrightarrow\)k.4+(1+2+3)
\(\Leftrightarrow\)k.4+6
vì k.4 chia hết cho 4 nhưng 6 không chia hết cho 4 nên k.4+6 không chia hết cho 4
\(\Rightarrow\) k+k+1+k+2+k+3 không chia hết cho 4
vậy tổng 4 số tự nhiên ko chia hết cho 4
OH SORY BẠN VÌ CÂU b) MÌNH CHỈ LÀM ĐƯỢC CHỨNG MINH RẰNG TỔNG 4 SỐ TỰ NHIÊN LIÊN TIẾP KHÔNG CHIA HẾT CHO 4 THÔI
VÀ MK NGHĨ CÂU B ĐỀ SAi
a, Gọi 3 số đó là : a,a+1,a+2.Ta có :
a+a+1+a+2
=a+a+a+1+2
=(a+a+a)+(1+2)
=3a+3 (*)
Từ (*) suy ra tổng của 3 số tự nhiên liên tiếp thì chia hết cho 3
a, Gọi 4 số đó là : a,a+1,a+2,a+3.Ta có :
a+a+1+a+2 +a+3
=a+a+a+a+1+2+3
=(a+a+a+a)+(1+2+3)
=4a+6
Vì 6 \(⋮̸\) 4 nên tổng của 4 số tự nhiên liên tiếp thì không chia hết cho 4
a, 3 số tự nhiên liên tiếp có dạng : a ; a+1 ; a+2
Tổng của 3 số này là :
\(x\) = \(a\) + \(a+1\) + \(a+2\) = \(3a\) + \(3\) = \(3\left(a+1\right)\) \(\Rightarrow\) \(x\) \(⋮\)3
Hay tổng của 3 số tự nhiên liên tiếp chia hết cho 3
b , 4 số tự nhiên liên tiếp là : \(a;a+1;a+2;a+3\)
Tổng của 4 số này là :
\(y=a+a+1+a+2+a+3\) = \(4a+5\)
Nhận thấy :
4a \(⋮\) 4 ; 5 \(⋮̸\) 4 \(\Rightarrow\) y \(⋮̸\) 4
Hay tổng của 4 số tự nhiên liên tiếp không chia hết cho 4
a,
Gọi hai số tự nhiên liên tiếp là a và a + 1
Nếu a chia hết cho 2 thì bài toán được chứng minh.
Nếu a không chia hết cho 2 thì a = 2k + 1 (k∈N)
Suy ra: a + 1 = 2k + 1 + 1 = 2k + 2
Ta có: 2k ⋮ 2; 2 ⋮ 2
Suy ra: (2k + 2) ⋮ 2 hay (a + 1) ⋮ 2
Vậy trong hai số tự nhiên liên tiếp, có một số chia hết cho 2
Mik chỉ làm được câu a thôi nhưng vẫn mong bạn ủng hộ ^-^
a) hai số liên tiếp thì sẽ có 1 số chẵn và 1 số lẻ , số chẵn là số chia hết cho 2 nên trong hai số tự nhiên liên tiếp sẽ có 1 số chia hết cho 2
a) Vì có 1 số chẵn và 1 số lẻ trong 2 số tự nhiên liên tiếp nên chia hết cho 2
b) Trong 3 số tự nhiên liên tiếp thì có số cộng các chữ số của số đó chia hết cho3
c) Tổng 2 số tự nhiên liên tiếp là chẵn + lẻ = lẻ nên ko chia hết cho 2
d) 3 số tự nhiên liên tiếp thì có 1 số chia 3 dư 1 , 1 số chia 3 dư 2 , 1 số chia hết cho 3 nên lấy số dư là 1+2=3 chia hết cho 3 nên tổng 3 số tự nhiên liên tiếp chia hết cho 3
2 số lẻ liên tiếp là
2k+1;2k+3(k thuoc N)
tổng là:
2k+1+2k+3
=4k+4
=4(k+4)
chia het cho 4
chắc vậy .
a) Gọi 2 số tự nhiên lẻ liên tiếp là 2k + 1 ; 2k + 3
=> 2k + 1 + 2k + 3 = ( 2k + 2k ) + ( 1 + 3 ) = 4k + 4 \(⋮\)4 ( Vì 4k và 4 đều \(⋮\)4 )
b) Gọi 3 số tự nhiên chẵn liên tiếp là 2k ; 2k + 2 ; 2k + 4
=> 2k + 2k + 2 + 2k + 4 = ( 2k + 2k + 2k ) + ( 2 + 4 ) = 6k + 6 \(⋮\)6 ( Vì 6k và 6 đều \(⋮\)6 )