K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A=\dfrac{x^4+x^2+11x^2+11}{x^4+x^2+5x^2+5}=\dfrac{\left(x^2+11\right)\left(x^2+1\right)}{\left(x^2+5\right)\left(x^2+1\right)}=\dfrac{x^2+11}{x^2+5}\)

b: \(A=\dfrac{x^2+5+6}{x^2+5}=1+\dfrac{6}{x^2+5}< =1+\dfrac{6}{5}=\dfrac{11}{5}\)

Dấu = xảy ra khi x=0

29 tháng 7 2023

bạn ơi cho mình hỏi ở câu b sao lại được \(\dfrac{6}{5}\) vậy ạ?

 

a: Ta có: \(x^2=3-2\sqrt{2}\)

nên \(x=\sqrt{2}-1\)

Thay \(x=\sqrt{2}-1\) vào A, ta được:

\(A=\dfrac{\left(\sqrt{2}+1\right)^2}{\sqrt{2}-1}=\dfrac{3+2\sqrt{2}}{\sqrt{2}-1}=7+5\sqrt{2}\)

30 tháng 10 2023

a) ĐKXĐ: 

\(\left\{{}\begin{matrix}x^2-9\ne0\\x+3\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm3\\x\ne-3\end{matrix}\right.\Leftrightarrow x\ne\pm3\) 

b) \(A=\dfrac{x+15}{x^2-9}-\dfrac{2}{x+3}\)

\(A=\dfrac{x+15}{\left(x+3\right)\left(x-3\right)}-\dfrac{2\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)

\(A=\dfrac{x+15-2x+6}{\left(x+3\right)\left(x-3\right)}\)

\(A=\dfrac{21-x}{\left(x+3\right)\left(x-3\right)}\)

c) Thay x = - 1 vào A ta có: 

\(A=\dfrac{21-\left(-1\right)}{\left(-1+3\right)\left(-1-3\right)}=\dfrac{21+1}{2\cdot-4}=\dfrac{22}{-8}=-\dfrac{11}{4}\)

14 tháng 12 2021

\(a,A=\dfrac{x^2-3x+2+x^2+3x+2-x^2+2x-4}{\left(x+2\right)\left(x-2\right)}=\dfrac{x^2+2x}{\left(x+2\right)\left(x-2\right)}\\ A=\dfrac{x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{x}{x-2}\\ b,A=\dfrac{x-2+2}{x-2}=1+\dfrac{2}{x-2}\in Z\\ \Rightarrow x-2\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Rightarrow x\in\left\{0;1;3;4\right\}\)

19 tháng 6 2021

a) đk: x khác 0;2;-2;3

A = \(\left(\dfrac{2+x}{2-x}-\dfrac{4x^2}{x^2-4}-\dfrac{2-x}{2+x}\right):\dfrac{x^2-3x}{2x^2-x^3}\)

\(\left(\dfrac{2+x}{2-x}+\dfrac{4x^2}{\left(2-x\right)\left(2+x\right)}-\dfrac{2-x}{2+x}\right):\dfrac{x-3}{2x-x^2}\)

\(\left(\dfrac{\left(x+2\right)^2+4x^2-\left(2-x\right)^2}{\left(2-x\right)\left(2+x\right)}\right):\dfrac{x-3}{x\left(2-x\right)}\)

\(\dfrac{x^2+4x+4+4x^2-x^2+4x-4}{\left(2-x\right)\left(2+x\right)}.\dfrac{x\left(2-x\right)}{x-3}\)

\(\dfrac{4x^2+8x}{\left(2-x\right)\left(2+x\right)}.\dfrac{x\left(2-x\right)}{x-3}\)

\(\dfrac{4x\left(x+2\right)}{\left(2-x\right)\left(2+x\right)}.\dfrac{x\left(2-x\right)}{x-3}=\dfrac{4x^2}{x-3}\)

b) Có \(\left|x-5\right|=2\)

<=> \(\left[{}\begin{matrix}x-5=2< =>x=7\left(Tm\right)\\x-5=-2< =>x=3\left(L\right)\end{matrix}\right.\)

Thay x = 7 vào A, ta có:

\(A=\dfrac{4.7^2}{7-3}=49\)

c) A = \(\dfrac{4x^2}{x-3}⋮4\left(\forall x\right)\)

 

15 tháng 7 2023

A = (15/√x) - (11x + 2√x - 3) - (3√x - 2√x - 1) - (2√x + 3√x - 3)

Tiếp theo, kết hợp các thành phần tương tự:

A = 15/√x - 11x - 2√x + 3 + 3√x - 2√x + 1 - 2√x - 3√x + 3

Đơn giản hóa biểu thức:

A = -11x + 15/√x + 4

Để tìm giá trị lớn nhất của A, ta có thể tìm điểm đạt cực đại của hàm số A(x). Tuy nhiên, để làm điều này, cần biết thêm về giá trị của x.

 

Sửa đề: (3căn x-2)/căn x-1-(2căn x+3)/(căn x+3)\(A=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}+\dfrac{-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

\(A=\dfrac{-5\sqrt{x}-15+17}{\sqrt{x}+3}==-5+\dfrac{17}{\sqrt{x}+3}< =\dfrac{17}{3}-5=\dfrac{2}{3}\)

Dấu = xảy ra khi x=0

29 tháng 12 2021

a: \(A=\dfrac{x^2-2x+2x^2+4x-3x^2-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2}{x+2}\)

5 tháng 1 2023

a, \(\dfrac{x}{x+2}\) + \(\dfrac{2x}{x-2}\) -\(\dfrac{3x^2-4}{x^2-4}\)

\(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{x^2-4}\)

\(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{\left(x+2\right)\left(x-2\right)}\)

\(\dfrac{x\left(x-2\right)+2x\left(x+2\right)-3x^2-4}{\left(x+2\right)\left(x-2\right)}\)

\(\dfrac{2x-4}{\left(x+2\right)\left(x-2\right)}=\dfrac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{2}{x+2}\)

Có vài bước mình làm tắc á nha :>