K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A=\dfrac{x^4+x^2+11x^2+11}{x^4+x^2+5x^2+5}=\dfrac{\left(x^2+11\right)\left(x^2+1\right)}{\left(x^2+5\right)\left(x^2+1\right)}=\dfrac{x^2+11}{x^2+5}\)

b: \(A=\dfrac{x^2+5+6}{x^2+5}=1+\dfrac{6}{x^2+5}< =1+\dfrac{6}{5}=\dfrac{11}{5}\)

Dấu = xảy ra khi x=0

29 tháng 7 2023

bạn ơi cho mình hỏi ở câu b sao lại được \(\dfrac{6}{5}\) vậy ạ?

 

30 tháng 10 2023

a) ĐKXĐ: 

\(\left\{{}\begin{matrix}x^2-9\ne0\\x+3\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm3\\x\ne-3\end{matrix}\right.\Leftrightarrow x\ne\pm3\) 

b) \(A=\dfrac{x+15}{x^2-9}-\dfrac{2}{x+3}\)

\(A=\dfrac{x+15}{\left(x+3\right)\left(x-3\right)}-\dfrac{2\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)

\(A=\dfrac{x+15-2x+6}{\left(x+3\right)\left(x-3\right)}\)

\(A=\dfrac{21-x}{\left(x+3\right)\left(x-3\right)}\)

c) Thay x = - 1 vào A ta có: 

\(A=\dfrac{21-\left(-1\right)}{\left(-1+3\right)\left(-1-3\right)}=\dfrac{21+1}{2\cdot-4}=\dfrac{22}{-8}=-\dfrac{11}{4}\)

14 tháng 12 2021

\(a,A=\dfrac{x^2-3x+2+x^2+3x+2-x^2+2x-4}{\left(x+2\right)\left(x-2\right)}=\dfrac{x^2+2x}{\left(x+2\right)\left(x-2\right)}\\ A=\dfrac{x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{x}{x-2}\\ b,A=\dfrac{x-2+2}{x-2}=1+\dfrac{2}{x-2}\in Z\\ \Rightarrow x-2\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Rightarrow x\in\left\{0;1;3;4\right\}\)

19 tháng 6 2021

a) đk: x khác 0;2;-2;3

A = \(\left(\dfrac{2+x}{2-x}-\dfrac{4x^2}{x^2-4}-\dfrac{2-x}{2+x}\right):\dfrac{x^2-3x}{2x^2-x^3}\)

\(\left(\dfrac{2+x}{2-x}+\dfrac{4x^2}{\left(2-x\right)\left(2+x\right)}-\dfrac{2-x}{2+x}\right):\dfrac{x-3}{2x-x^2}\)

\(\left(\dfrac{\left(x+2\right)^2+4x^2-\left(2-x\right)^2}{\left(2-x\right)\left(2+x\right)}\right):\dfrac{x-3}{x\left(2-x\right)}\)

\(\dfrac{x^2+4x+4+4x^2-x^2+4x-4}{\left(2-x\right)\left(2+x\right)}.\dfrac{x\left(2-x\right)}{x-3}\)

\(\dfrac{4x^2+8x}{\left(2-x\right)\left(2+x\right)}.\dfrac{x\left(2-x\right)}{x-3}\)

\(\dfrac{4x\left(x+2\right)}{\left(2-x\right)\left(2+x\right)}.\dfrac{x\left(2-x\right)}{x-3}=\dfrac{4x^2}{x-3}\)

b) Có \(\left|x-5\right|=2\)

<=> \(\left[{}\begin{matrix}x-5=2< =>x=7\left(Tm\right)\\x-5=-2< =>x=3\left(L\right)\end{matrix}\right.\)

Thay x = 7 vào A, ta có:

\(A=\dfrac{4.7^2}{7-3}=49\)

c) A = \(\dfrac{4x^2}{x-3}⋮4\left(\forall x\right)\)

 

15 tháng 7 2023

A = (15/√x) - (11x + 2√x - 3) - (3√x - 2√x - 1) - (2√x + 3√x - 3)

Tiếp theo, kết hợp các thành phần tương tự:

A = 15/√x - 11x - 2√x + 3 + 3√x - 2√x + 1 - 2√x - 3√x + 3

Đơn giản hóa biểu thức:

A = -11x + 15/√x + 4

Để tìm giá trị lớn nhất của A, ta có thể tìm điểm đạt cực đại của hàm số A(x). Tuy nhiên, để làm điều này, cần biết thêm về giá trị của x.

 

Sửa đề: (3căn x-2)/căn x-1-(2căn x+3)/(căn x+3)\(A=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}+\dfrac{-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

\(A=\dfrac{-5\sqrt{x}-15+17}{\sqrt{x}+3}==-5+\dfrac{17}{\sqrt{x}+3}< =\dfrac{17}{3}-5=\dfrac{2}{3}\)

Dấu = xảy ra khi x=0

29 tháng 12 2021

a: \(A=\dfrac{x^2-2x+2x^2+4x-3x^2-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2}{x+2}\)

5 tháng 1 2023

a, \(\dfrac{x}{x+2}\) + \(\dfrac{2x}{x-2}\) -\(\dfrac{3x^2-4}{x^2-4}\)

\(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{x^2-4}\)

\(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{\left(x+2\right)\left(x-2\right)}\)

\(\dfrac{x\left(x-2\right)+2x\left(x+2\right)-3x^2-4}{\left(x+2\right)\left(x-2\right)}\)

\(\dfrac{2x-4}{\left(x+2\right)\left(x-2\right)}=\dfrac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{2}{x+2}\)

Có vài bước mình làm tắc á nha :>

20 tháng 7 2021

a, \(A=-x^2-2x+3=-\left(x^2+2x-3\right)=-\left(x^2+2x+1-4\right)\)

\(=-\left(x+1\right)^2+4\le4\)

Dấu ''='' xảy ra khi x = -1 

Vậy GTLN là 4 khi x = -1 

b, \(B=-4x^2+4x-3=-\left(4x^2-4x+3\right)=-\left(4x^2-4x+1+2\right)\)

\(=-\left(2x-1\right)^2-2\le-2\)

Dấu ''='' xảy ra khi x = 1/2 

Vậy GTLN B là -2 khi x = 1/2 

c, \(C=-x^2+6x-15=-\left(x^2-2x+15\right)=-\left(x^2-2x+1+14\right)\)

\(=-\left(x-1\right)^2-14\le-14\)

Vâỵ GTLN C là -14 khi x = 1

Bài 8 : 

b, \(B=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)

Dấu ''='' xảy ra khi x = 3

Vậy GTNN B là 2 khi x = 3 

c, \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu ''='' xảy ra khi x = 1/2 

Vậy ...

c, \(x^2-12x+2=x^2-12x+36-34=\left(x-6\right)^2-34\ge-34\)

Dấu ''='' xảy ra khi x = 6

Vậy ...