A= 1+2+3+4+5+....+99
Mọi người giúp Vy với! VY cảm ơn nhé <33
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dãy số trên có số số hạng là: (khoảng cách mỗi số là $1$ đơn vị)
$(2020-1):1+1=2020$(số hạng)
Tổng của dãy số trên là:
$(2020+1)\times2020:2=2041210$
1+2+3+...+2020=\(\dfrac{\left(2020-1\right):1+1\cdot\left(1+2020\right)}{2}\)=2041210.
1)
\((x+2)(x+3)(x+4)(x+5)-24\\=[(x+2)(x+5)]\cdot[(x+3)(x+4)]-24\\=(x^2+7x+10)(x^2+7x+12)-24\)
Đặt \(x^2+7x+10=y\), khi đó biểu thức trở thành:
\(y(y+2)-24\\=y^2+2y-24\\=y^2+2y+1-25\\=(y+1)^2-5^2\\=(y+1-5)(y+1+5)\\=(y-4)(y+6)\\=(x^2+7x+10-4)(x^2+7x+10+6)\\=(x^2+7x+6)(x^2+7x+16)\)
2) Bạn xem lại đề!
M = 5 + 53 + 55 + ... + 547 + 549
52M = 52(5 + 53 + 55 + ... + 547 + 549)
25M = 53 + 55 + 57 + ... + 549 + 551
25M - M = ( 53 + 55 + 57 + ... + 549 + 551) - (5 + 53 + 55 + ... + 547 + 549)
24M = 551 - 5
M = \(\frac{5^{51}-5}{24}\)
\(\left(1-\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{4}\right)\cdot...\cdot\left(1-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}\cdot...\cdot\dfrac{97}{98}\cdot\dfrac{98}{99}\)
\(=\dfrac{1\cdot2\cdot3\cdot...\cdot98}{2\cdot3\cdot4\cdot...\cdot99}\)
\(=\dfrac{1}{99}\)
\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}.....\dfrac{99}{98}.\dfrac{100}{99}=\dfrac{100}{2}=50\)
\(3\dfrac{2}{5}\cdot1\dfrac{4}{7}=\dfrac{17}{5}\cdot\dfrac{11}{7}=\dfrac{187}{35}\)
1) I ( not play ) .am not playing.. football now . I'm tired
2) Shh ! they ( study ) .are studing.. in the library
3) Vy and Phong ( not do ) .doesn't.. their homework
4) Now I ( have ) .am having.. an English leson with Mr Lee
5) Phong , Vy and Duy ( ride ) .are riding.. their bicycles to school now
1) I am not playing football now . I'm tired
2) Shh ! they are studying in the library
3) Vy and Phong aren't doing their homework
4) Now I am having an English leson with Mr Lee
5) Phong , Vy and Duy are riding their bicycles to school now
\(a,\dfrac{3}{5}+\dfrac{3}{5\cdot9}+\dfrac{3}{9\cdot13}+....+\dfrac{3}{97\cdot101}\)
\(=\dfrac{3}{4}\cdot\left(\dfrac{4}{5}+\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+....+\dfrac{4}{97\cdot101}\right)\)
\(=\dfrac{3}{4}\cdot\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+....+\dfrac{1}{97}-\dfrac{1}{101}\right)\)
\(=\dfrac{3}{4}\cdot\left(1-\dfrac{1}{101}\right)\)
\(=\dfrac{3}{4}\cdot\dfrac{100}{101}\)
\(=\dfrac{75}{101}\)
\(b,\left(1+\dfrac{1}{2}\right)\cdot\left(1+\dfrac{1}{3}\right)\cdot\left(1+\dfrac{1}{4}\right)\cdot....\cdot\left(1+\dfrac{1}{99}\right)\)
\(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot....\cdot\dfrac{100}{99}\)
\(=\dfrac{100}{2}=50\)
Tính nhanh:
a) \(\dfrac{3}{5}+\dfrac{3}{5.9}+\dfrac{3}{9.13}+...+\dfrac{3}{97.101}\)
= \(\dfrac{3}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{97}-\dfrac{1}{101}\right)\)
= \(\dfrac{3}{4}\left(1-\dfrac{1}{101}\right)\)
= \(\dfrac{3}{4}\times\dfrac{100}{101}\)
= \(\dfrac{75}{101}\)
b) \(\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{3}\right)\left(1+\dfrac{1}{4}\right)...\left(\dfrac{1}{98}+1\right)\left(\dfrac{1}{99}+1\right)\)
\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}...\dfrac{99}{98}.\dfrac{100}{99}\)
\(=\dfrac{3.4.5...99.100}{2.3.4...98.99}\)
\(=\dfrac{100}{2}\)
\(=50\)
\(A=1+2+3+4+5+...+99\)
Dãy \(A\) có số số hạng là:
\((99-1):1+1=99\)(số hạng)
Tổng dãy \(A\) là:
\(99+1)\times99:2=4950\)
A=1+2+3+...+99=\(\dfrac{\left(99-1\right):1+1\cdot\left(1+99\right)}{2}\)=4950.