1+3+5+...+(2x+1)=100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\left(\left(3\cdot\left(3x+2\right)\right)+4\cdot\left(x+2\right)\right)-90=0.\)
\(13x-76=0\)
\(13x=76\)
\(x=\frac{76}{13}\)
\(2,\left(\left(5\cdot\left(x+1\right)\right)+3\cdot\left(2x+1\right)\right)-65=0\)
\(11x-57=0\)
\(11x=57\)
\(x=\frac{57}{11}\)
\(3,\left(\left(3\cdot\left(3x+4\right)\right)+5\cdot\left(2x+1\right)\right)-100=0\)
\(19x-83=0\)
\(19x=83\)
\(x=\frac{83}{19}\)
1.
$(3^2-2^3)x+3^2.2^2=4^2.3$
$\Leftrightarrow x+36=48$
$\Leftrightarrow x=48-36=12$
2.
$x^5-x^3=0$
$\Leftrightarrow x^3(x^2-1)=0$
$\Leftrightarrow x^3(x-1)(x+1)=0$
$\Leftrightarrow x^3=0$ hoặc $x-1=0$ hoặc $x+1=0$
$\Leftrightarrow x=0$ hoặc $x=\pm 1$
3.
$(x-1)^2+(-3)^2=5^2(-1)^{100}$
$\Leftrightarrow (x-1)^2+9=25$
$\Leftrightarrow (x-1)^2=25-9=16=4^2=(-4)^2$
$\Rightarrow x-1=4$ hoặc $x-1=-4$
$\Leftrightarrow x=5$ hoặc $x=-3$
4.
$(2x-1)^2-(2x-1)=0$
$\Leftrightarrow (2x-1)(2x-1-1)=0$
$\Leftrightarrow (2x-1)(2x-2)=0$
$\Leftrightarrow 2x-1=0$ hoặc $2x-2=0$
$\Leftrightarrow x=\frac{1}{2}$ hoặc $x=1$
$\Lef
`@` `\text {Ans}`
`\downarrow`
\((3^2-2^3)x+3^2.2^2=4^2.3\)
`=> x + (3*2)^2 = 48`
`=> x+6^2 = 48`
`=> x + 36 = 48`
`=> x = 48 - 36`
`=> x=12`
Vậy, `x=12`
\(x^5-x^3=0\)
`=> x^3(x^2 - 1)=0`
`=>`\(\left[{}\begin{matrix}x^3=0\\x^2-1=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0\\x^2=1\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0\\x=\pm1\end{matrix}\right.\)
Vậy, `x \in {0; +- 1 }`
\(\left(x-1\right)^2+\left(-3\right)^2=5^2\cdot\left(-1\right)^{100}\)
`=> (x-1)^2 + 9 = 25*1`
`=> (x-1)^2 + 9 = 25`
`=> (x-1)^2 = 25 - 9`
`=> (x-1)^2 = 16`
`=> (x-1)^2 = (+-4)^2`
`=>`\(\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=4+1\\x=-4+1\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
Vậy, `x \in {5; -3}`
\((2x-1)^2-(2x-1)=0\)
`=> (2x-1)(2x-1) - (2x-1)=0`
`=> (2x-1)(2x-1-1)=0`
`=>`\(\left[{}\begin{matrix}2x-1=0\\2x-2=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x=1\\2x=2\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
Vậy, `x \in {1; 1/2}`
b: \(\Leftrightarrow\dfrac{20}{x}-\dfrac{20}{x+20}=\dfrac{1}{6}\)
=>\(\dfrac{20x+400-20x}{x\left(x+20\right)}=\dfrac{1}{6}\)
=>x*(x+20)=400*6=2400
=>x^2+20x-2400=0
=>(x+60)(x-40)=0
=>x=-60 hoặc x=40
c: \(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{8}{4x^2-1}\)
=>(2x+1)^2-(2x-1)^2=8
=>4x^2+4x+1-4x^2+4x-1=8
=>8x=8
=>x=1(nhận)
\(A=\frac{1}{3.5}+\frac{1}{5.7}+..+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{100}{609}\\ \)
\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+..+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{1}{3}-\frac{1}{2x+3}\)\(=\frac{2x}{3\left(2x+3\right)}\)
\(A=\frac{x}{3\left(2x+3\right)}=\frac{100}{609}=\frac{100}{3.203}=\frac{100}{3\left(2.100+3\right)}\)\(\Rightarrow x=100\)
a: \(=2x\left(4x^2-4x+1\right)-3x^2-9x-4x^2-4x\)
\(=8x^3-8x^2+2x-7x^2-13x\)
\(=8x^3-15x^2-11x\)
c: \(=5x^3-5x^2-5x^3+5x^2-15=-15\)
d: \(=x^2+10x+25-4x\left(4x^2+12x+9\right)-\left(2x-1\right)\left(x^2-9\right)\)
\(=x^2+10x+25-16x^3-48x^2-36x-\left(2x-1\right)\left(x^2-9\right)\)
\(=-16x^3-47x^2-26x+25-2x^3+18x+x^2-9\)
\(=-18x^3-46x^2-8x+16\)
1 + 3 + 5+...+ (2\(x\) + 1) = 100
Xét dãy số: 1; 3; 5;..... 2\(x\) + 1
Dãy số trên là dãy số cách đều với khoảng cách là: 3- 1 = 2
Số số hạng của dãy số trên là: (2\(x\) + 1 - 1): 2 + 1 = \(x\) + 1
Tổng dãy số trên là: (2\(x\) + 1 + 1)\(\times\)(\(x\) + 1):2 = 100
(2\(x\) + 2) \(\times\) (\(x\) + 1) : 2 = 100
2\(\times\)(\(x\) + 1)\(\times\)(\(x\) + 1): 2 = 100
(\(x+1\))\(\times\)(\(x\)+1) = 100
vì 100 = 10 \(\) \(\times\) 10
\(x\) + 1 = 10
\(x\) = 10 -1
\(x\) = 9
\(\dfrac{\left(2x+1-1\right):2+1\cdot\left(2x+1+1\right)}{2}\)=100
=>(x+1)x(2x+2)=100x2=200
=>2x2+2x+2x+2=200
=>2x2+4x=200-2=198
=>2x(x+2)=198
=>x=9