Với hai số a, b bất kì, viết \(a - b = a + \left( { - b} \right)\) và áp dụng hằng đẳng thức bình phương của một tổng để tính \({\left( {a - b} \right)^2}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\({a^3} + \left( { - {b^3}} \right) = \left[ {a + \left( { - b} \right)} \right]\left[ {{a^2} - a.\left( { - b} \right) + {{\left( { - b} \right)}^2}} \right] = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\)
Từ đó ta có \({a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\)
\({\left( {a - b} \right)^3} = {\left[ {a + \left( { - b} \right)} \right]^3} = {a^3} + 3.{a^2}.\left( { - b} \right) + 3.a.{\left( { - b} \right)^2} + {\left( { - b} \right)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}\)
Từ đó ta có \({\left( {a - b} \right)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}\)
a) \(\left(4\sqrt{2}+\sqrt{30}\right)\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4-\sqrt{15}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{150}-\sqrt{90}\right).\sqrt{\dfrac{8-2\sqrt{15}}{2}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{25.6}-\sqrt{9.10}\right).\sqrt{\dfrac{\left(\sqrt{5}\right)^2-2\sqrt{5}.\sqrt{3}+\left(\sqrt{3}\right)^2}{2}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right).\sqrt{\dfrac{\left(\sqrt{5}-\sqrt{3}\right)^2}{2}}\)
\(=\left(\sqrt{10}+\sqrt{6}\right).\dfrac{\left|\sqrt{5}-\sqrt{3}\right|}{\sqrt{2}}=\sqrt{2}.\left(\sqrt{5}+\sqrt{3}\right).\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=2\)
a) Ta có: \(\left(4\sqrt{2}+\sqrt{30}\right)\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{4-\sqrt{15}}\)
\(=\sqrt{8-2\sqrt{15}}\cdot\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left(\sqrt{5}-\sqrt{3}\right)^2\cdot\left(4+\sqrt{15}\right)\)
\(=\left(8-2\sqrt{15}\right)\left(4+\sqrt{15}\right)\)
\(=32+8\sqrt{15}-8\sqrt{15}-30\)
=2
\({\left( {a - b} \right)^2} = {\left[ {a + \left( { - b} \right)} \right]^2} = {a^2} + 2.a.\left( { - b} \right) + {\left( { - b} \right)^2} = {a^2} - 2.ab + {b^2}\)