Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
a ) \(A=\left(a+b+c\right)^2+a^2+b^2+c^2\)
\(A=a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+c^2\)
\(A=\left(a^2+2ab+b^2\right)+\left(a^2+2ac+c^2\right)+\left(b^2+2bc+c^2\right)\)
\(A=\left(a+b\right)^2+\left(a+c\right)^2+\left(b+c\right)^2\)
a. ( a + b + c)2 + a2 + b2 + c2
= a2 + b2 + c2 + 2ab + 2ac + 2bc + a2 + b2 + c2
= (a+b)2 + (b+c)2 + (a+c)2
b. 2.(a-b).(c-b) + 2.(b-a).(c-a) + 2.(b-c).(a-c)
đặt a - b = x; b-c = y; c-a = z => x + y + z = 0 (1)
ta có: 2.x.(-y) + 2.(-x).z + 2.y.(-z)
= -2xy - 2xz - 2yz = -2.(xy+xz+yz)
ta có: (x+y+z)2 = x2 + y2 + z2 + 2xy + 2yz + 2xz
02 = x2 + y2 + z2 + 2.(xy+yz+xz)
=> x2 + y2 + z2 = -2.(xy+yz+xz) (2)
Từ (2) => 2.(a-b).(c-b) + 2.(b-a) .(c-a) + 2.(b-c).(a-c) = x2 + y2 + z2
= (a-b)2 + (b-c)2 + (c-a)2
\(25{x^2} + 20xy + 4{y^2} = {\left( {5x} \right)^2} + 2.5x.2y + {\left( {2y} \right)^2} = {\left( {5x + 2y} \right)^2}\)
Chọn D.
Ta có :
\(x^2+2\left(x+1\right)^2+3\left(x+2\right)^2+4\left(x+3\right)^2\)
\(=x^2+2\left(x^2+2+1\right)+3\left(x^2+4x+4\right)+4\left(x^2+6x+9\right)\)
\(=x^2+2x^2+4x+2+3x^2+12x+12+4x^2+24x+36\)
\(=10x^2+40x+50\)
\(=\left(x^2+10x+25\right)+\left(9x^2+30x+25\right)\)
\(=\left(x+5\right)^2+\left(3x+5\right)^2\)
Vậy biểu thức trên viết được dưới dạng tổng các bình phương của 2 biểu thức(đpcm)