tìm các chữ số a,b để b=71a1b chia hết cho 45
ai nhanh tớ tick làm đầy đủ các bước nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(b = 0; a = 0); b= 0; a = 9); (b = 5; a = 4)
Vậy71415 chia hết cho 45
a: A chia hết cho 36
=>A chia hết cho 9 và chia hết cho 4
=>2+0+a+1+b chia hết cho 9 và \(b\in\left\{2;6\right\}\)
TH1: b=2
=>a=4
TH2: b=6
=>a=0 hoặc a=9
b: B chia hết cho 45
=>B chia hết cho 5 và B chia hết cho 9
=>3+a+5+b chia hết cho 9 và b=0;b=5
TH1: b=0
=>a=1
TH2: b=5
=>a=5
a, Để 42ab chia hết cho 5 thì b = 0 hoặc b = 5.
TH1: b = 0 => 42ab = 42a0
Xét số 42a0 chia hết cho 9 khi ( 4 + 2 + a + 0 ) chia hết cho 9
hay ( 6 + a ) chia hết cho 9
=> a = 3.
TH2: b = 5 => 42ab = 42a5
Xét số 42a5 chia hết cho 9 khi ( 4 + 2 + a + 5 ) chia hết cho 9
hay ( 11 + a ) chia hết cho 9
=> a = 7.
Vậy a = 3 và b = 0 hoặc a = 7 và b = 5.
b, Vì 25a1b chia hết cho 5 nhưng không chia hết cho 2 => b = 5.
=> 25a1b = 25a15
Xét số 25a15 chia hết cho 3 khi ( 2 + 5 + a + 1 + 5 ) chia hết cho 3
hay ( 13 + a ) chia hết cho 3
=> a = 2 hoặc a = 5 hoặc a = 8.
Vậy b = 5 và a = 2 hoặc 5 hoặc 8.
c, Vì 45 = 9 x 5
=> 71a1b chia hết cho cả 9 và 5
=> b = 0 hoặc b = 5.
TH1: b = 0 => 71a1b = 71a10
Xét số 71a10 chia hết cho 9 khi ( 7 + 1 + a + 1 + 0 ) chia hết cho 9
hay ( 9 + a ) chia hết cho 9
=> a = 0 hoặc a = 9.
TH2: b = 5 => 71a1b = 71a15
Xét số 71a15 chia hết cho 9 khi ( 7 + 1 + a + 1 + 5 ) chia hết cho 9
hay ( 14 + a ) chia hết cho 9
=> a = 4.
Vậy b = 0 thì a = 0 hoặc 9 ; b = 5 thì a = 4.
d,579abc = 579000 + abc
Vì 579000 chia 7 dư 2 => abc chia 7 dư 5. => abc = 7k + 5 ( k \(\in\)N ) => 2 x abc - 3 = 14k + 7 chia hết cho 7 < 1 >
Vì 579000 chia 9 dư 3 => abc chia 9 dư 6. => abc = 9m + 6 ( m \(\in\)N ) => 2 x abc - 3 = 18m + 9 chia hết cho 9 < 2 >
Vì 579000 chia hết cho 5 => abc chia hết cho 5.
Từ < 1 > ; < 2 > => 2 x abc - 3 chia hết cho cả 9 và 7 mà ( 9,7 ) = 1 => 2 x abc - 3 chia hết cho 63
Để abc chia hết cho 5 => c = 0 hoặc 5 => 2 x abc - 3 có chữ số tận cùng là 7.
2 x abc có tận cùng là 7 và chia hết cho 63 => Thương của 2 x abc khi chia cho 63 chỉ có thể là 9; 19; 29; 39; 49; ...
Xét lần lượt thương là 9; 19; 29 ta tìm được abc = 285 hoặc 600 hoặc 915.
Vậy \(\left(a;b;c\right)\in\left\{\left(2;8;5\right);\left(6;0;0\right);\left(9;1;5\right)\right\}.\)
a) 42ab chia hết cho 9 và 5
Ta có: 42ab chia hết cho 5 nên 42ab có tận cùng là 0 hoặc 5, suy ra b có thể là 0 hoặc 5
Số chia hết cho 9 là số có tổng các chữ số chia hết cho 9
Để 42a0 chia hết cho 9 thì 4 + 2 + a + 0 chia hết cho 9 => a = 3 ( Vì 9 - 4 - 2 - 0 = 3)
Để 42a5 chia hết cho 9 thì 4 + 2 + a + 5 chia hết cho 9 => a = 7 ( Vì 18 - 4 - 2 - 5 = 7)
Vậy ta có hai số 4230 và 4275 chia hết cho 9 và 5
b) 25a1b chia hết cho 3, cho 5 và không chia hết cho 2
Số chia hết cho 5 và không chia hết cho 2 có tận cùng là 5 => b = 5 => số có dạng: 25a15
Số chia hết cho 3 là số có tổng các chữ số chia hết cho 3
Ta có 2 + 5 + 1 + 5 = 13 nên a có thể là các số: 2, 5, 8 ( lấy 15 - 13 =2; 18 - 13 = 5; 21 - 13 =8 )
c, d tương tự
\(a,\)Để \(n+3⋮n\)
Mà \(n⋮n\Rightarrow3⋮n\)
=> n là ước của 3 .
Mà n lại số tự nhiên
\(\Rightarrow n=\left\{1;3\right\}\)
\(b,\) Để \(n+8⋮n+1\)
\(\Rightarrow\left(n+1\right)+7⋮n+1\)
Mà \(n+1⋮n+1\Rightarrow7⋮n+1\)
\(\Rightarrow6⋮n\)
Mà n là số tự nhiên
\(\Rightarrow n=\left\{1;2;3;6\right\}\)
a) (b = 0; a = 4); (b = 2; a = 2);(b = 4; a = 0); (b = 4; a = 9).
b) (b = 0; a = 0); b= 0; a = 9); (b = 5; a = 4).
c) (b = 0; a= 7).
d) (b = 5; a = 2); (b = 5;a = 5); (b = 5;a = 8).
Vì 20;22;24 đều chia hết cho 2 nên:
a) Để B chia hết cho 2 thì x cũng p chia hết cho 2
b) Đê B ko cia hết cho 2 thì x cx p k chia hết cho 2
tk m nhé
a) 22 chia hết cho 2
20 chia hết cho 2
24 chia hết cho 2
=> x chia hết cho 2
x= số chẵn
b)ngược lại với trên
x= số lẻ
B chia hết cho 45
=>B chia hết cho 5 và B chia hết cho 9
=>7+1+a+1+b chia hết cho 9 và (b=0 hoặc b=5)
=>a+b chia hết cho 9 và (b=0 hoặc b=5)
TH1: b=0
=>a=0 hoặc a=9
TH2: b=5
=>a=4