Chứng minh a/[1/(x+y) = xy/(x+y)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=\left(x+y\right)\left(\left(x+y\right)^2-2xy-xy\right)\)
\(=1\left(1^2-3\left(-1\right)\right)=1\left(1^2+3\right)=4\)
b, Ta có : \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=\left(x-y\right)\left(\left(x-y\right)^2+3xy\right)\)
\(=1\left(1+3.9\right)=19\)
b: \(C=xy\left(x^3+2\right)-y\left(xy^3+2x\right)\)
\(=x^4y+2xy-xy^4-2xy\)
\(=xy\left(x^3-y^3\right)\)
\(=xy\left(x-y\right)\left(x^2+xy+y^2\right)⋮x^2+xy+y^2\)
\(B=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(xy+\frac{1}{xy}\right)^2\)
\(-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\left(xy+\frac{1}{xy}\right)\)
\(\Rightarrow B=x^2+2+\frac{1}{x^2}+y^2+2+\frac{1}{y^2}+x^2y^2+2+\frac{1}{x^2y^2}-x^2y^2\)
\(-2-x^2-y^2-\frac{1}{y^2}-\frac{1}{x^2}-\frac{1}{x^2y^2}\)
\(\Rightarrow B=x^2y^2-x^2y^2+x^2-x^2+1.\frac{1}{x^2}+1.\frac{1}{x^2y^2}-1.\frac{1}{x^2}-1\)
\(.\frac{1}{x^2y^2}+1.\frac{1}{y^2}-1.\frac{1}{y^2}+y^2-y^2+2+2+2-2\)
\(\Rightarrow B=4\)
a) Ta có: \(A=\dfrac{x-\sqrt{xy}+y}{x\sqrt{x}+y\sqrt{y}}+\dfrac{x+\sqrt{xy}+y}{x\sqrt{x}-y\sqrt{y}}\)
\(=\dfrac{x-\sqrt{xy}+y}{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}+\dfrac{x+\sqrt{xy}+y}{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}\)
\(=\dfrac{1}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{\sqrt{x}-\sqrt{y}}\)
\(=\dfrac{\sqrt{x}-\sqrt{y}+\sqrt{x}+\sqrt{y}}{x-y}\)
\(=\dfrac{2\sqrt{x}}{x-y}\)
Bạn nên viết đầy đủ đề và viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn,