Cho n là 1 số tự nhiên lẻ . Cmr : \(24^n+1\) chia hết cho 25 nhưng không chia hết cho 23
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ta có n là số tự nhiên lẻ =>24^n có chữ số tận cùng là 24 (cái này xem kĩ hơn về phần tính chất chia hét của lũy thừa nhé)
=>24^n+1 có chữ số tận cùng là 25 ( vì số chữ số tận cùng nào thì chia hết cho số đó =>25 chia hết 25)
+ ta có 24:23 (có dư là 1) =>24^n :23 (dư 1 )=>24^n+1 :23 (dư 2) => 24^n+1 k chia hết cho 23
- Vì n là số tự nhiên lẻ
=> 24n có tận cùng là 24
=> 24n + 1 có tận cùng là 24 + 1 = 25
Vì số chia hết cho 25 là số có chữ số tận cùng là 25 => 24n + 1 chia hết cho 25 (1)
- Vì 24 : 23 = 1 (dư 1)
=> 24n : 23 cũng sẽ dư 1
=> 24n + 1 : 23 sẽ có dư là 2
=> 24n + 1 sẽ không chia hết cho 23 (2)
Từ (1) và (2) suy ra: 24n + 1 chia hết cho 25 nhưng ko chia hết cho 23 với n là số tự nhiên lẻ
242+1=(24+1)(24-1)
25.23
25chia het cho 25
suy ra 25.23 chia hetcho 25
Bài 1 : a . Sử dụng công thúc sau : a^n - b^n = ( a-b ) ( a^n-1 + a^n-2 . b + .....+ b^n-1 )
=> A = 21^5 - 1 chia hết cho 20
=> A = 21^10 - 1 chia hết 400
=> A= 21^10 - 1 chia hết cho 200
+)Vì n là 1 số tự nhiên lẻ
=) \(24^n\)có chữ số tận cùng là 24
=) \(24^n+1\)có chữ số tận cùng là 25\(⋮25\)( Vì số chia hết 25 là số có chữ số tận cùng là 25 ) \(\left(1\right)\)
+) Vì \(24:23\left(dư1\right)\)=) \(24^n:23\left(dư1\right)\)=) \(24^n+1:23\left(dư2\right)\)
=) \(24^n+1\)không chia hết 23 \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)=) \(24^n+1⋮25\)nhưng không chia hết cho 23 (với n là 1 số tự nhiên lẻ)
vì N là 1 số tự nhiên lẻ
\(\Rightarrow24^n\)có chử số tận cùng là 24
\(\Rightarrow24^n+1\) có chữ số tận cùng là\(25⋮25\)
bởi vì 24:23 dư 1 = \(24^n\div23\left(d\text{ư1}\right)\Rightarrow24+1.23\left(d\text{ư2}\right)\)