Tìm x không âm
a) 3\(\sqrt{4x}\)<\(\sqrt{9}\)
b) 4\(\sqrt{8x}\) > hoặc = 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ x <hoac= -23/4
b/ x=2
a/ có 2xcăn6 > 2x2=4
=> 2 căn 6 > 3+1
<=> 2 căn 6 - 3 >1
b/ có 3 căn 2 > 3
=> 3 căn 2 - 9 > -6
=> 6 > 9- 3 căn 2
a) \(\sqrt{x}>4\) có nghĩa là \(\sqrt{x}>\sqrt{16}\)
Vì \(x\ge0\) (x không âm) nên \(\sqrt{x}>\sqrt{16}\Leftrightarrow x>16\)
Vậy \(x>16\)
b) \(\sqrt{4x}\le4\) có nghĩa là \(\sqrt{4x}\le\sqrt{16}\)
Vì \(x\ge0\) (x không âm) nên \(\sqrt{4x}\le\sqrt{16}\Leftrightarrow4x\le16\Leftrightarrow x\le4\)
Vậy \(x\le4\)
c) \(\sqrt{4-x}\ge6\) có nghĩa là \(\sqrt{4-x}\ge\sqrt{36}\)
Vì \(x\ge0\) (x không âm) nên \(\sqrt{4-x}\ge\sqrt{36}\Leftrightarrow4-x\ge36\Leftrightarrow x\le-32\)
Vậy \(x\le-32\)
Câu 1:
\(a-\sqrt{a}+1=a-2.\sqrt{a}.\frac{1}{2}+\frac{1}{2^2}+\frac{3}{4}\)
\(=(\sqrt{a}-\frac{1}{2})^2+\frac{3}{4}\)
Ta thấy \((\sqrt{a}-\frac{1}{2})^2\geq 0, \forall a\) không âm
\(\Rightarrow a-\sqrt{a}+1=(\sqrt{a}-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}\)
Vậy GTNN của biểu thức là $\frac{3}{4}$. Dấu "=" xảy ra khi \((\sqrt{a}-\frac{1}{2})^2=0\Leftrightarrow a=\frac{1}{4}\)
Câu 2:
\(\sqrt{1+2a-a^2}=\sqrt{2-(a^2-2a+1)}=\sqrt{2-(a-1)^2}\)
Ta thấy \((a-1)^2\geq 0, \forall a\) thuộc tập xác định
\(\Rightarrow 2-(a-1)^2\leq 2\)
\(\Rightarrow \sqrt{1+2a-a^2}=\sqrt{2-(a-1)^2}\leq \sqrt{2}\)
Vậy GTLN của biểu thức là $\sqrt{2}$ khi \((a-1)^2=0\Leftrightarrow a=1\)
\(a_1,\sqrt{x}< 7\\ \Rightarrow x< 49\\ a_2,\sqrt{2x}< 6\\ \Rightarrow x< 18\\ a_3,\sqrt{4x}\ge4\\ \Rightarrow4x\ge16\\ \Rightarrow x\ge4\\ a_4,\sqrt{x}< \sqrt{6}\\ \Rightarrow x< 6\)
\(b_1,\sqrt{x}>4\\ \Rightarrow x>16\\ b_2,\sqrt{2x}\le2\\ \Rightarrow2x\le4\\ \Rightarrow x\le2\\ b_3,\sqrt{3x}\le\sqrt{9}\\ \Rightarrow3x\le9\\ \Rightarrow x\le3\\ b_4,\sqrt{7x}\le\sqrt{35}\\ \Rightarrow7x\le35\\ \Rightarrow x\le5\)
ĐKXĐ: `x>=0`
`a,3\sqrt(4x)<sqrt9`
`<=>6sqrt(x)<3`
`<=>sqrtx<1/2`
`=>x<1/4` kết hợp với ĐKXĐ có `0<=x<1/2`
KL....
`b, 4\sqrt(8x)>=2`
`<=>\sqrt(8x)>=1/2`
`=>8x>=1/4`
`<=>x>=1/32(TMĐK)`
KL...