chứng minh rằng trong hình thang các tia phân giác của hai góc kề một cạnh bên vuông gọc với nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử hình thang ABCD có AB // CD
* Ta có: ∠ A 1 = ∠ A 2 = 1/2 ∠ A (vì AE là tia phân giác của góc A)
∠ D 1 = ∠ D 2 = 1/2 ∠ D ( Vì DE là tia phân giác của góc D)
Mà ∠ A + ∠ D = 180 0 (2 góc trong cùng phía bù nhau)
Suy ra: ∠ A 1 + ∠ D 1 = 1/2 ( ∠ A + ∠ D) = 90 0
* Trong ΔAED, ta có:
∠ (AED) + ∠ A 1 + ∠ D 1 = 180 0 (tổng 3 góc trong tam giác)
⇒ ∠ (AED) = 180 0 – ( ∠ A 1 + ∠ D 1 ) = 180 0 - 90 0 = 90 0
Vậy AE ⊥ DE.
nên \(\widehat{A}_1+\widehat{D}_1=90^0\). \(\Delta ADE\) có \(\widehat{A}_1+\widehat{D}_1=90^0\) nên \(\widehat{AED}=90^0\). Vậy \(AE\perp DE\)
Giải sử hình thang ABCD có AB// CD
\(\widehat{A_1}=\widehat{A_2}=\dfrac{1}{2}\widehat{A}\left(gt\right)\)
\(\widehat{D_1}=\widehat{D_2}=\dfrac{1}{2}\widehat{D}\left(gt\right)\)
Mà \(\widehat{A}+\widehat{D}=180^o\) (hai góc trong cùng phía bù nhau)
Suy ra:
\(\widehat{A}_1+\widehat{D_1}=\dfrac{1}{2}\left(\widehat{A}+\widehat{D}\right)=\dfrac{1}{2}.180^o=90^o\)
Trong ∆ AED ta có :
\(\widehat{AED}+\widehat{A_1}+\widehat{D_1}=180^o\) (tổng ba góc trong 1 tam giác)
\(\Rightarrow\widehat{AED}=180^o-\left(\widehat{A_1}+\widehat{D_1}\right)=180^o-90^o=90^o\)
\(\Rightarrow AE\perp ED\)
Vậy trong hình thang các tia phân giác của hai góc nhọn kề một cạnh bên vuông góc với nhau
1 )
Xét hình thang ABCD (AB//CD)
góc A + góc D =180 độ (2 góc trong cùng phía )
góc B +góc C =180 độ
- Nếu góc A tù (> 90độ) => góc D nhọn
- Nếu góc B tú => góc C nhọn
=> hình thang có nhiều nhất 2 góc tù, có nhiều nhất 2 góc nhọn
2 ) Giả sử ABCD là hình thang có đáy AB//CD
Khi đó ta có góc A + góc D bằng 180 độ (2 góc kề 1 cạnh bên hình thang bù nhau) (Hoặc bạn hiểu là 2 góc trong cùng phía bù nhau đó)
Vậy tia phân giác góc A nên bằng nửa góc A
TIa phân giác góc D bằng nửa góc D
Vậy Cộng 2 góc tia phân giác đó bằng 180độ chia 2 bằng 90 độ
2,
Giả sử ABCD là hình thang có đáy AB//CD
Khi đó ta có góc A + góc D bằng 180 độ (2 góc kề 1 cạnh bên hình thang bù nhau) (Hoặc bạn hiểu là 2 góc trong cùng phía bù nhau đó)
Vậy tia phân giác góc A nên bằng nửa góc A
TIa phân giác góc D bằng nửa góc D
Vậy Cộng 2 góc tia phân giác đó bằng 180 độ chia 2 bằng 90 độ
Ta có
\(\widehat{A}+\widehat{D}=180^o\) (Hai dt // bị cắt bởi 1 đường thẳng tạo thành 2 góc trong cùng phía bù nhau)
\(\widehat{DAE}=\frac{\widehat{A}}{2}\)
\(\widehat{ADE}=\frac{\widehat{D}}{2}\)
\(\Rightarrow\widehat{DAE}+\widehat{ADE}=\frac{\widehat{A}+\widehat{D}}{2}=\frac{180^o}{2}=90^o\)
Xét tg AED có
\(\widehat{DAE}+\widehat{ADE}=90^o\Rightarrow\widehat{AED}=90^o\Rightarrow AE\perp DE\)
Gọi ht đó là ABCD nha , AE là phân giác A ; DE là phân GIÁC cắt nhau tại E
AB //CD => A + D = 180 ĐỘ
Ta có EAD = 1/2 A (AE là phân giác ) (2)
EDA = 1/2 D ( DE là phân giác ) (1)
Từ (1) và (2) => EAD + EDA = = 1/2 ( A + D ) = 1/2.180 = 90 độ
TAM giác EAD có EAD + EDA = 90 độ => AED = 90độ
Hay AE vuông góc với DE
Tương tự cm với tia phân giác B và C
Ta gọi góc vuông là O .
Kéo dài CO sao cho CO=OE.
Kéo dài DO sao cho DO=OF
Xét tam giác DOC và tam giác EOF có :
CO=OE(cmt)
DO=OF(cmt)
O1=O2(đđ)
=>tam giác DOC+tam giác EOF = 360 độ
Mà 2 tam giác cân=> 2 tam giác = 360độ =>O=E+F+D1+C1:2=>góc O:2=90 độ
Bn có thể Tham khảo ở đường link này :
https://baitapsgk.com/lop-8/sbt-toan-lop-8/cau-16-trang-81-sach-bai-tap-sbt-toan-8-tap-1-chung-minh-rang-trong-hinh-thang-cac-tia-phan-giac-cua-hai-goc-ke-mot.html
Gọi giao điểm các đường phân giác của các góc: A, B, C, D theo thứ tự cắt nhau tại E, H, F, G.
* Trong ∆ ADG , ta có:
∠ (GAD) = 45 0 ; ∠ (GDA) = 45 0 (gt)
Suy ra: ∠ (AGD) = 180 0 - ∠ (GAD) - ∠ (GDA) = 90 0
⇒ ∆ GAD vuông cân tại G.
⇒ GD = GA
Trong ∆ BHC, ta có:
∠ (HBC) = 45 0 ; ∠ (HCB) = 45 0 (gt)
Suy ra: ∠ (BHC) = 180 0 - ∠ (HBC) - ∠ (HCB) = 90 0
⇒ ∆ HBC vuông cân tại H.
⇒ HB = HC
* Trong ΔFDC, ta có: ∠ D 1 = 45 0 ; ∠ C 1 = 45 0 (gt)
Suy ra: ∠ F = 180 0 - D1 - C1 = 90 0
⇒ ∆ FDC vuông cân tại F ⇒ FD = FC
Nên tứ giác EFGH là hình chữ nhật (vì có 3 góc vuông).
Xét ∆ GAD và ∆ HBC,ta có: ∠ (GAD) = ∠ (HBC) = 45 0
AD = BC (tính chất hình chữ nhật)
∠ (GDA) = ∠ (HCB) = 45 0
Suy ra: ∆ GAD = ∆ HBC ( g.c.g)
Do đó, GD = HC .
Lại có: FD = FC (chứng minh trên)
Suy ra: FG = FH
Vậy hình chữ nhật EFGH có hai cạnh kề bằng nhau nên nó là hình vuông.
ngu the cn ro
A = A1 + A2 = 2A1 = 2A2
D = D1 + D2 = 2D1 =2D2
mà A + D =180O => A1 +D1 = 90
Gọi 2 tia phân giac góc A và D cắt nhau tại K xet tg AKD có A+D = 90 => K =90 (dpcm)