Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho s = 1^2008 + 2^2008+ 3^2008+ 4^2008 tìm du của phép chia s cho 11
Tìm dư của S khi chia cho 11
Sử dụng đồng dư thức em nhé.
S = 12008 + 22008 + 32008 + 42008
S = 1 + (25)401.23 + (35)401.33 + (45)401.43
S = 1 + 32401. 8 + 243401. 27 + 1024401. 64
32 \(\equiv\) -1 (mod 11) ⇒32401.8 \(\equiv\) -8 (mod 11) (1)
243 \(\equiv\) 1 (mod 11); 27 \(\equiv\) 5 (mod 11) \(\Rightarrow\) 243401.27 \(\equiv\) 5 (mod 11) (2)
1024 \(\equiv\) 1 (mod 11); 64 \(\equiv\) 9 (mod 11) \(\Rightarrow\) 1024401.64 \(\equiv\) 9 (mod 11) (3)
Kết hợp (1); (2); (3) ta có:
S \(\equiv\) 1 - 8 + 5 + 9 (mod 11)
S \(\equiv\) 7 (mod 11)
Vậy S khi chia 11 dư 7
Sử dụng đồng dư thức em nhé.
S = 12008 + 22008 + 32008 + 42008
S = 1 + (25)401.23 + (35)401.33 + (45)401.43
S = 1 + 32401. 8 + 243401. 27 + 1024401. 64
32 \(\equiv\) -1 (mod 11) ⇒32401.8 \(\equiv\) -8 (mod 11) (1)
243 \(\equiv\) 1 (mod 11); 27 \(\equiv\) 5 (mod 11) \(\Rightarrow\) 243401.27 \(\equiv\) 5 (mod 11) (2)
1024 \(\equiv\) 1 (mod 11); 64 \(\equiv\) 9 (mod 11) \(\Rightarrow\) 1024401.64 \(\equiv\) 9 (mod 11) (3)
Kết hợp (1); (2); (3) ta có:
S \(\equiv\) 1 - 8 + 5 + 9 (mod 11)
S \(\equiv\) 7 (mod 11)
Vậy S khi chia 11 dư 7